
[image: image2.wmf]
[image: image1.wmf]

SPA2006 Conservative XP: an Oxymoronic Methodology that works

29th March 2006

James Dobson

1 Introduction to James’s own methodology

This is very context-driven. It grew from James’s own experiences and doesn’t pretend to provide answers to every possible contingency.

Conservative XP is influenced by many things – particularly the Theory of Constraints.

James focuses heavily on quality assurance – both preventive and diagnostic

Problems to be solved:

· Schedule, budget, quality – project issues

· Organisational issues

Abstract features of the method

· Iterative, feature driven

Less abstract

It is not “waterfall in disguise”.

1.1 How does it work

Everything is based on a model.

1.2 Development model

Scrum’s skeleton is used – though with a six-week cycle. There’s a number of backlogs:

· Product

· Sprint

· Test

· Release

Every six weeks, a useful increment of functionality is released.

Concurrent development does not equate to rework. Neither is it more expensive, provided you get the key artefacts right at the beginning. It does let you do more in less time, by partly overlapping the requirements, design, program and test phases.

Any problems upstream still propagate downstream, so do “just enough” at each stage. If the “pipe” becomes unbalanced, there is scope to move people around between activities.

You can leverage existing assets and move from waterfall towards agile.

1.3 Best practices

· During development

· XP

· Continuous integration

· TDD

· Incremental design

· CRC sessions

· Design early, design often: avoid surprises (scalability, performance…)

· Continuous acceptance testing

· Enhanced Scrum questions

· Kai-Zen Fallback

· Humans can concentrate on at most two issues at a time without loss of efficiency

· Kai-Zen is Japaneze for “continuous improvement”

· If stalled making progress on both your deliverables, do some refactoring / code improvement

· Code coverage

· PMD failures

· These improvement goals are put on the fallback list during sprint planning

· Constraint-Tracking

· Root-Cause Analysis: issues, not people

· Action sprints

· A time-boxed piece of work: e.g. three days to address a specific issue

· Grow and shrink the team

· Before development

· Team building

· Soap box / elevator pitch

· JAD (James’s favourite: Joint Application sessions)

1.4 Augmented Requirements – what they are and why you need them

James looks for a handful of well-defined requirements rather than “big requirements up front”. Use a workshop that involves everyone: customers, testers, operators, coders…

· Higher returns on automated testing

· Why bother to capture requirements that are obvious or very difficult to find?

· Leverage knowledge and skills

· A customer is not:

· A customer base

· A domain expert

· A paranoid android (testers are!)

· So why rely on them to write your requirements?

· Do you even have a customer?

· Some lightweight methodologies are just not sufficiently quality focused

· Organisational change – a good first step towards agile.

· Delivers projects and teams.

1.5 Quality focus

· Preventative

· CXP practices

· Embedded tester

· Kai-Zen Fallback List

· XP practices

· Good requirements (some 50% bugs stem from requirements

· CRC and Domain-Driven Design

· Curative

· Redundant array of QA techniques

· For internal and external quality

· Building the thing right

· Building the right thing

· Sweet-spot techniques

2 Example – Reservation and Pricing Service Layer

· A large-scale integration for an Airline

· Replacing a legacy system

· Highly available

· Seamless switchover

· Tough development environment

· Highly political (following airline merger)

· Segmented

· Team

· Project manager

· Team leader

· 6 developers

· 6 business analysts / testers

· Load tester

· Deployer

· Highly distributed (communication an issue)

· Language was not an issue really, but culture could be (tacit understanding)

2.1 Why CXP?

Project was four or five months late and had delivered very little when James took over – he had to make a snap decision. He didn’t know RUP well enough and there were other factors (team, history, organisational problems, project requirements).

Jim Highsmith has characterised projects according to “exploration factor”. In this case, the XF was low – requirements were well known and the technology was not bleeding-edge. Hence was able to avoid the mistake of using XP in the wrong context. CXP seemed a good fit.

In general, CXP should be used:

· In a “retarded, waterfall” company with under-trained colleagues – you believe in Agile but you can’t sell it

· Boehm & Turner: when you have

· Decent requirements

· A load of Cockburn Level 1 staff and at least one level 3

· A system that is critical (millions lost if it goes down, but not safety-critical)

· Your team is small enough

Boehm & Turner got this wrong: in chaos you need more control, i.e. more traditional PM.

2.2 CXP Organisational Solutions

See the handouts

2.3 Coaching on a CXP Project

· Boot camps – good for getting developers up to speed quickly

· Bit risky – ties up team leaders for a couple of weeks

· On-project training agenda

· Interview each team member at start and every 6 months

· One-to-one continuous coaching

· Every day

· Agile Project Management’s “simple rules” enable this

· Grow teams and shrink teams

· Achieve critical mass within the organisation

Coaching isn’t always about coaching! See Cockburn.

Specific coaching practices:

· Refactor

· To fit

· For fun, to teach

· Brown-bag sessions

· FitNesse

· JUnit

· 7 habits of highly effective programmers

· Workshops (customers don’t give you time to learn)

· Agile project management

· Acceptance-test-driven development

2.4 In real life

Coaching was “frighteningly” successful: popular, added value to people’s careers, the project and the organisation.

Some problems with certain people.

Boot camping: mixed success

On-Project Training Agenda (OPTA) – only done with one person: too ad-hoc to succeed

Bugs get fixed really quickly – a few hours at most!

Everyone knows the object model very well: no duplication of code – localised errors

No bugs (well, perhaps one) found in final acceptance testing; customers in the field found a couple more, but they were very minor

Kai-Zen fallback list was the best simple rule ever invented:

· Coverage went from 20% to 95% in six weeks

· Checkstyle errors vanished

· Bad smells were systematically removed

It’s easier to obtain forgiveness than permission – be courageous: you can always get another job

Scrum questions, when recorded, allowed implementation of constraint tracking

· Recurrent obstacles allow you to put pressure on root causes of delay

· However, look out for evil people who will use this to apportion blame

Agile project management

· Pull-based task systems: negate Parkinson’s Law, the team takes responsibility

· A lot of CXP techniques are motivational techniques in disguise

· Frees team lead up to coach

· Lock-step approach falls apart though

· Requirements team became the bottleneck

· Slippage propagation

· How do you keep multidisciplinary teams busy all the time

· Collaborative work with TDD / ATDD and Kai-Zen Fallback List

Configuration management

· Put CMMI documents into the backlog too (unless you can reject it completely – James thinks it’s a waste of time to pursue CMMI certification)

· Task tracking

· Configuration management and documentation tasks should be in the backlog

· Scrum properly

· Configuration is as important as the project schedule

· Process compliance documentation got out of date

· This made the time ahead of the audit really horrible

2.5 Conclusion

Was RPSL a successful project?

Yes – client loved it (got his bonus)

Analysts loved Fitnesse

Developers were happy due to the amount they learned

People decided not to leave the company after all

Management’s view: ecstatic

Was parent organisation changed? Yes – identify the right people and influence those. Critical mass will take over. Be patient and it will happen through dispersion of staff.

RDSL is now a piece of architecture. It’s now possible to defer development of some of the features until customers actually need them (“single piece flow”).

2.6 Lessons learned

· Good requirements lead to a good design and save you time

· Augmented: as many forms as possible – existing examples, use cases, paper prototypes…

· Easier to see that you are indeed gonna need it (YAIGNI)

· Automated tests have a long lifetime

· Design – enables communication and can be done in an XP fashion

Did CXP really deliver the RPSL? Of course not – people did (but CXP helped them).

Cause and effect are hard to separate. People need to be

· Enthusiastic

· Intelligent

· A driven leader with a driven team

· Instant top-class software team: just add guidance and best practice

Management loves the term “Conservative XP”, so it is useful from a sales perspective.

3 Questions

What was the commercial relationship between the parties in RPSL?

Accenture was providing a team of people who had to sort out this project for the airline – but essentially they were body shopped. It just so happened that the team wasn’t mixed as they normally are, because all the client’s own team were all busy on something else. This allowed James to sell the concept more easily due to his own seniority within Accenture.

In Finland last week, James was coming up with the first “agile billing model” for consultancies. The idea was to share risk and value more equably between customer and supplier. Business value is quite difficult to define and measure.

The billing model directly affects the way software is developed and frustrates team members.

What is the difference between CXP and XP? At least part of the XP v1 practices were not followed, but others were. But who cares – just follow whatever method suits you. The insistence on up-front requirements and acceptance tests is not very XPish.

Read James’s blog for more information. http://blogs.accenture.nl/conservativexp/

COMPANY CONFIDENTIAL

	SPA2006 Conservative XP: an Oxymoronic Methodology that works
	29th March 2006

	Questions
	Page 7

COMPANY CONFIDENTIAL

[image: image1.wmf][image: image2.wmf]