Web Services Build Fest – day 2

Brief for today

Pairs or teams will work in either C# or Java. Everyone gets to do Web Services!

Team18 – Scott Crawford, Sam Dalton, Immo Hüneke

Team15 – Dave Harvey

Creating a web service

1. Decide what the service will offer – inputs, outputs, transformations

2. Write the interface (in Eclipse, using Java)

3. Generate WSDL (AXIS Script)

4. Generate Stubs and Skeletons from WSDL (AXIS Script)

5. Refresh to import stubs & skeletons back into Eclipse (parameter names change!)

6. Test the service using JUnit – fails because there is no implementation yet

7. Implement the web service

8. Re-run test – succeeds (locally)

9. Test the service remotely using JUnit – fails because the service hasn’t been deployed

10. Deploy service

11. Test again

12. Place code under source control

Hotel Booking Service implementation

Difficulties we encountered:

· Requirements needed clarification

· Stupid details

· Generated WSDL imposed default argument names, which had to be substituted manually before generating the stubs and skeletons

· Generating stub and skeleton code from WSDL after adding a new method may obliterate existing code

· Natural representation of the data (e.g. list) not supported by WSDL – we had to use HashMap for almost everything

· Mapping between Java built-in types and java.util library types and SOAP types would have been helpful (e.g. java.util.Date maps to DateTime, java.util.list doesn’t map to anything)

· Eclipse could provide more help about Java types

· Integration between Eclipse and Axis scripts could be better, or a guide to explain what the scripts do would at least help. (A picture of the artefacts and the way they flow into and out of tools would be immensely valuable).

Other teams found:

· Unfamiliarity with the tool (VisualStudio.NET or Eclipse/Axis)

· Step by step instructions mean that you don’t really understand what’s going on at a deep level 

· Knowing where the bloody files are – tool hides complexity, but it makes it hard to know why things work or don’t

· Typos in the instructions

· Knowing what data types you could pass into and out of web services

