
IoC Containers in Java

Wolf Schlegel, Valtech UK

Eoin Woods, UBS Investment Bank

© Valtech Ltd 2006
2

Disclaimer

This workshop and the materials provided to participants make use of software which
constitutes Open-Source software (OSS).
This software remains the copyright of the original author and you do not, nor is it intended that
you will, acquire any right, title or interest in it by virtue of you having received a copy of it
from Valtech Limited (“Valtech”).
The use, redistribution and/or modification of such software is governed by the terms of the
appropriate software licence. Workshop participants may use, redistribute and/or modify the
software only under the terms of the relevant licence. We emphasise that you should ensure you
are fully aware of all licence terms or other terms of use relating to any software that you use. The
most common OSS licence terms can be viewed
at: http://www.opensource.org/licenses/index.php
The software is provided as downloaded and is distributed in the hope that it will be
useful. However, it is unsupported and is provided "as is" without any warranty or representation
of any kind either express or implied including, but not limited to, the implied warranties of
merchantability, quality, fitness for a particular purpose , title and non-infringement.
In no event shall Valtech be liable, whether in contract or tort (including negligence) for any loss or
damage arising out of or in connection with the use or performance of Open Source software
howsoever obtained. In particular Valtech shall not be liable for any loss of profit, lost savings,
business interruption, loss of use, loss of data or loss of business opportunity or
any special, indirect, or consequential damages.
Valtech Limited
29 January 2006

http://www.opensource.org/licenses/index.php

© Valtech Ltd 2006
3

Table of Contents

Introduction to Inversion of Control
– Inversion of control vs. dependency injection
– Service lookup versus dependency injection
– Designing with dependency injection
– Implementing dependency injection
– Dependency injection containers
– IoC and testing
– Limitations of dependency injection
– Other runtime containers
– Conclusion

Hands-on Exercises
– Applying IoC to a sample application

IoC Containers in Java – Part 1
Introduction to Inversion of Control
Discussion of selected IoC Containers

© Valtech Ltd 2006
5

A short history of IoC

IoC frameworks entered the Java world in 2003
Spring 0.9

– Open source in February 2003
– Spring 0.9 released in July 2003
– Spring 1.0 final released in March 2004

PicoContainer
– PicoContainer 1.0 beta 1 released in August 2003

HiveMind
– HiveMind 1.0-rc-1 released in August 2004

Microcontainer
– Microcontainer 1.0.0 released in September 2005

© Valtech Ltd 2006
6

What is inversion of control?

General principle exhibited by many frameworks
Traditional software is developed with the application code “in
control”

– The application defines the “main” function/method/entry point
– Calls the application’s components to perform processing

Frameworks invert this relationship and call the application
code

– “Don’t call us we’ll call you”
– Framework provides the “main” function/method/entry point
– Application code fits into the framework and is called when the

framework decides is correct
A particular variant of IoC is “dependency injection”

© Valtech Ltd 2006
7

What is dependency injection?

Most frameworks use the “Service Lookup” approach to allow
application code to find its dependencies

– e.g. J2EE code looks up resources via JNDI
– CORBA applications find services via a Naming Service
– The lookup mechanism is hard coded into the application code

In contrast, Dependency Injection frameworks supply the
resources that a component needs when initialising it

– Component declares resources required (usually as interface types)
– Framework configuration defines concrete instances to use
– Framework passes component the concrete resources at load time

Note that most “IoC” containers are really “Dependency
Injection” containers

© Valtech Ltd 2006
8

Service Lookup vs Dependency Injection

Service Lookup

MyApp

Component1

Component2

public void MyApp() {
Component1 c1 = new Component1(…);
Component2 c2 = new Component2(…);

}

create create

MyApp
Component1

Component2

public void setComp1(Component1 c) {…}
public void setComp2(Component2 c) {…}

Framework
create createcreate

MyApp app = new MyApp() ;
Component1 c1 = new Component1(…);
Component2 c2 = new Component2(…);
app.setComp1(c1) ;
app.setComp2(c2 ;
app.start() ;

AppConfig

Dependency Injection

© Valtech Ltd 2006
9

Why Dependency Injection?

Remove dependency on concrete implementations
– Allows easy substitution of implementations
– Increases testability when mocks/stubs can be substituted for

components and environment objects (msg queues, db connections, …)
Enforced loose coupling

– Components have to declare their dependencies via their interface
– Components must only depend on references passed to them
– Removes lookup coupling and so makes evolution easier

Allow simple component types
– Allows frameworks to add standard processing using proxies etc.
– Hence frameworks can use plain objects as components

© Valtech Ltd 2006
10

Designing with Dependency Injection

Define dependencies in terms of interfaces (not classes)
– Factories aren’t required as the IoC Container will do this for us

Add setters for each of a class’ external dependencies
– Or a constructor, most containers allow both approaches

Do not look up resources from within a class
– If a new resource is required, this is a new dependency

Define how the application is assembled using the container
– XML configuration file or short code snippet

Add an application entry point to initialise the application
– Some containers (Spring) need this others (JBoss Microcontainer) don’t
– Initialises the framework, passing it the configuration

© Valtech Ltd 2006
11

Designing with Dependency Injection

Resource Lookup

Dependency Injection

Structure and dependencies change slightly …

© Valtech Ltd 2006
12

Dependency Injection Containers

You can use dependency injection in your application directly
– Write a very simple container or hardcode configuration

Alternatively, use a container
– Provides conventions and configuration
– Provides factories for components and application assembly code

Well known IoC containers
– Spring
– JBoss Microcontainer
– HiveMind
– PicoContainer (and NanoContainer)
– Apache Fortress (in Excalibur)
Good list at http://java-source.net/open-source/containers
We’ll be looking at Spring, JBoss Microcontainer, HiveMind and

PicoContainer

http://java-source.net/open-source/containers

© Valtech Ltd 2006
13

Implementing Dependency Injection

Dependency Injection implemented by many frameworks
Three main approaches taken to its implementation

– Constructor, Setter and Interface injection
Constructor injection

– Declare constructor parameters to define object dependencies
Setter injection

– Declare JavaBean properties with setters to provide dependencies
Interface injection

– Implement interfaces that allow container to inject dependencies
All approaches require component configuration

– Configuration files (e.g. XML) or code

© Valtech Ltd 2006
14

Implementing Dependency Injection

Constructor injection
– All dependencies injected via constructor arguments

• Requires potentially complex constructor argument lists
– Avoids reliance on get/set naming conventions

• e.g. addStateObserver()
– Ensures that object is fully initialised after constructor called

• No need for invariant checking methods
– Allows immutable properties

• No need to provide a setter
– Less flexible initialisation

• Need a constructor per configuration option
– Can be difficult to understand

• Rely on ordering of parameters

© Valtech Ltd 2006
15

Implementing Dependency Injection

Setter Injection
– All dependencies injected via setter methods

• No need for constructors
– Allows flexible initialisation

• Any set of properties can be initialised
– Named properties allow for readable configuration data

• Clear what is being injected
– Requires JavaBean conventions to be followed

• Non standard method names are problematic
– Can result in invalid object configurations

• Need post initialisation checking methods
• Spring InitializingBean.afterPropertiesSet() mechanism

© Valtech Ltd 2006
16

Implementing Dependency Injection

Interface Injection
– Less common option (Apache Avalon, EJB)
– Dependencies declared and/or injected via implementing interfaces
– May couple application to the framework

• e.g. javax.ejb.SessionBean.setSessionContext()
• Avalon avoids this via configuration

– Significant implementation overhead for complex dependencies
• Large number of interfaces to implement and maintain

– Similar strengths and weaknesses to setter injection

© Valtech Ltd 2006
17

Implementing Dependency Injection

Component Configuration
– All three implementation approaches require configuration
– Configuration may be via configuration files or code
– Configuration files

• Usually XML
• Often awkward to create
• No type checking (mistakes found at runtime)

– Code
• Usually the language of the application code
• Configuration is “just” coding
• Type checked via compiler (mistakes found at compile time)

© Valtech Ltd 2006
18

JBoss Microcontainer (1)

“Provides an environment to configure and manage POJOs”
– [Getting Started with the JBoss Microcontainer]

Comprises a turnkey ready application entry point
– org.jboss.kernel.plugins.bootstrap.standalone.StandaloneBootstrap
– Application code does not need to reference Microcontainer classes

Dependencies between POJOs are declared in a configuration file
– META-INF\jboss-beans.xml

Applications are deployed as .beans files
– E.g. calculator.beans
– Contains the configuration file
– Applications can be deployed standalone
– Alternatively, .beans files can be run inside in the JBoss application server

© Valtech Ltd 2006
19

JBoss Microcontainer (2)

Container manages the lifecycle of objects
Configuration of POJOs via jboss-beans.xml comprises

– Deploying POJOs known as “beans” using default or other constructors
– Using factories to create beans
– Setting properties
– Injecting dependencies between beans using

• Constructors
• Setters

– Resolving circular dependencies between beans (to a certain extent)
– Declaring collections containing given elements

© Valtech Ltd 2006
20

Spring IoC (1)

Not just an IoC container!
– Extensive enterprise Java application framework
– MVC webapp framework
– J2EE / library usability wrappers (e.g. JmsTemplate)

Simple POJO JavaBeans are combined into applications
Applications constructed using a “Bean Factory”

– Number of implementations of …beans.factory.BeanFactory
– org.springframework.beans.factory.xml.XmlBeanFactory

Provides both setter and constructor injection models
– Setter injection often assumed by Spring documentation
– Bean creation via factories also available for complex situations

Beans can be created using constructors or factories

© Valtech Ltd 2006
21

Spring IoC (2)

Collections of type List, Set, Map and Properties

Beans can be created as singletons or non-singletons
– The latter is also called a prototype
– The container cannot fully manage the lifecycle of a non-singleton

instance
Auto-wiring provided by Bean Factories reduce configuration
required

– Autowiring comes in different modes (e.g. by name or by type)
– Autowiring by type relies on uniqueness of types used
– Stubs and implemented beans collide when using autowiring by type

Usually possible to avoid any application code dependency on
Spring classes and interfaces

© Valtech Ltd 2006
22

Spring IoC (3)

Lifecycle management via standard interface methods
– InitializingBean.afterPropertiesSet

– DisposableBean.destroy()

Method injection replaces methods in a managed bean
– Can be used to overcome incompatible lifecycles of different beans

Configuration typically via spring-beans.xml file
– Using the XmlBeanFactory
– Code based configuration is also possible

Deployment just involves creating a JAR containing classes
and (usually) an XML configuration file

– Create bean factory and retrieve main bean to start application

© Valtech Ltd 2006
23

PicoContainer

PicoContainer manages POJOs
– Non-intrusive as POJOs need not to depend on PicoContainer classes

Supports constructor and setter injection
Lifecycle management based on miscellaneous interfaces
Can monitor lifecycle of components
Supports injection of collections
“No forced metadata choice”

– However, NanoContainer supports XML configuration files
Nested containers or container hierarchy

– Parent is used for resolving components not found locally
– Components in child-containers can override components in parent-

containers

© Valtech Ltd 2006
24

NanoContainer

Provides additional functionality to PicoContainer
– In particular meta-data and script language support:

XML, Groovy, Beanshell, Jython, Rhino (Javascript)
– Class name based composition via reflection
– Classloader management
– Booter and Deployer

NanoContainer’s core component is complemented by further
components for

– Persistence
– Remoting
– Adaptors to other IoC frameworks

© Valtech Ltd 2006
25

HiveMind (1)

A sophisticated IoC container
– More than just IoC, less than an application framework like Spring

Hosted as part of Apache’s Jakarta project
– http://jakarta.apache.org/hivemind

Written by WebCT Inc for their Vista product (2001/02/03)
– Then donated to Apache, development still led by Howard Lewis Ship

Aimed specifically at J2EE projects
– Not a requirement, a general assumption (still usable outside container)
– Also works well with Jakarta Tapestry webapp framework

Supplied in three parts
– HiveMind: the IoC container, interceptors and application configuration
– HiveMind-Lib: Spring and EJB interoperability, configuration helpers
– HiveMind-JMX: easy service management via JMX

© Valtech Ltd 2006
26

HiveMind (2)

Applications defined as “modules” of “services”
– A service is a POJO providing an application component

Service construction via a BuilderFactory creating a Registry
– Defined via a module descriptor
– XML or Groovy descriptor files
– Lazy creation when services are retrieved from the registry

Sophisticated dependency injection features
– Configuration points for XML to Java object conversion
– Lightweight initialisation for configuration properties

Can support property or factory service creation
– Factory creation allows constructor injection or difficult cases

Provides unique HiveDoc tool
– Generates HiveMind specific application documentation a la JavaDoc

© Valtech Ltd 2006
27

IoC and Testing

IoC allows separation of interface and implementation
– Fundamental requirement for easy testing

This separation allows easy introduction of mocks or stubs
– A “stub” is a simple testing implementation of an interface returning

standard values
– A “mock” is a more sophisticated version that is initialised with an

“expectation” (Fowler) of the calls that will be made to it
IoC (or rather DI) allows mock or stub objects to be injected

– A unit test can inject mock or stub objects
– A system or integration test can inject simplified implementations
– Production deployment injects real (complex) service implementations

© Valtech Ltd 2006
28

Limitations of Dependency Injection

Imposes application constraints
– Application structure must fit container constraints (e.g. JavaBeans)
– Naming may need to follow conventions (setters, interfaces, …)

Configuration may be awkward
– XML files to understand and create
– Something else for developers to learn

Some containers require dependencies on the container
– Spring (in many cases), Avalon, EJB, …

Edge cases can be very awkward to resolve
– Complex dependencies (e.g. maps or lists of dependencies)
– May need container specific solutions like custom factories

Multithreaded applications require a different bean lifecycle

© Valtech Ltd 2006
29

Other Runtime Containers

Services or infrastructure provided by J2EE containers
– Concurrency
– Messaging
– Naming and directory
– Persistence
– Remoting
– Transaction management

IoC containers “just” assemble an application from POJOs
– Generally, they do not address the concerns listed above

• Spring and NanoContainer provide respective adapters and frameworks
– However, IoC containers can be run inside J2EE containers which in turn

provide these services
• JBoss MC “.beans” applications can be run inside JBoss Application Server

© Valtech Ltd 2006
30

Conclusion

IoC Containers and Frameworks have much to offer
– Demand loose (implementation) coupling of components
– Unit testing becomes simple, therefore it gets done
– Frameworks (e.g. Spring) provide a great deal of useful utility code

Some resulting technical issues to be aware of
– Systems are harder to assemble, comprehend and debug

• “What is an IWidget? Well, it depends ….”
– Only one sort of coupling is addressed

Some potential adoption pitfalls to be aware of
– Overheads of learning and making mistakes
– Allow for open source style documentation and supporting materials
– Decide whether to tie to a container or not: some are quite intrusive

IoC Containers in Java – Part 2
Hands- on Exercises

© Valtech Ltd 2006
32

Calculator Sample Application

Calculator provided by Objects by Design
– http://www.objectsbydesign.com/projects/calc/overview.html

Calculator consists of a couple of components such as
– CPU
– CalculatorTape
– CalculatorFrame

Swing based user interface
A lot of examples provided by IoC containers are

– Web applications or
– Simple classes that illustrate a given detail of the respective container

Compared to this, the calculator application is a meaningful
and self contained example that can be run from the command
line

http://www.objectsbydesign.com/projects/calc/overview.html

© Valtech Ltd 2006
33

Calculator View Package

© Valtech Ltd 2006
34

Calculator Model Package

© Valtech Ltd 2006
35

Example Application

© Valtech Ltd 2006
36

Example After Dependency Injection

© Valtech Ltd 2006
37

Exercises

All exercises come as self contained Eclipse projects
– Breaking one exercise should not affect other exercises
– Alternatively, all exercises can be run from the command line using Ant

Exercises cover the following scenarios
– Running the plain vanilla calculator
– Using constructor based dependency injection
– Using setter based dependency injection
– Injecting stub implementations of components

Exercises encompass all containers discussed
All examples coming with the IoC containers used are
contained in the session material for all the eager beavers who
finish the exercises well ahead of schedule

© Valtech Ltd 2006
38

References

Containers (in alphabetical order)
– http://jakarta.apache.org/hivemind/
– http://www.jboss.com/products/jbossmc
– http://nanocontainer.codehaus.org/Home
– http://www.picocontainer.org/Home
– http://springframework.org/

• http://www.springframework.org/docs/reference/index.html

Calculator
– http://www.objectsbydesign.com/projects/calc/overview.html

Other resources
– http://java-source.net/open-source/containers
– http://www.martinfowler.com/articles/injection.html

http://jakarta.apache.org/hivemind/
http://www.jboss.com/products/jbossmc
http://nanocontainer.codehaus.org/Home
http://www.picocontainer.org/Home
http://springframework.org/
http://www.springframework.org/docs/reference/index.html
http://www.objectsbydesign.com/projects/calc/overview.html
http://java-source.net/open-source/containers
http://www.martinfowler.com/articles/injection.html

© Valtech Ltd 2006
39

Contact Details

First of all, many thanks for attending our session!
We sincerely hope you enjoyed the IoC workshop.

If you have any questions or comments, please contact us at:
– wolf.schlegel@valtech.co.uk
– eoin.woods@ubs.com
– eoin@copse.org.uk

mailto:wolf.schlegel@valtech.co.uk
mailto:eoin.woods@ubs.com
mailto:eoin@copse.org.uk

	Disclaimer
	Table of Contents
	IoC Containers in Java – Part 1�Introduction to Inversion of Control�Discussion of selected IoC Containers
	A short history of IoC
	What is inversion of control?
	What is dependency injection?
	Service Lookup vs Dependency Injection
	Why Dependency Injection?
	Designing with Dependency Injection
	Designing with Dependency Injection
	Dependency Injection Containers
	Implementing Dependency Injection
	Implementing Dependency Injection
	Implementing Dependency Injection
	Implementing Dependency Injection
	Implementing Dependency Injection
	JBoss Microcontainer (1)
	JBoss Microcontainer (2)
	Spring IoC (1)
	Spring IoC (2)
	Spring IoC (3)
	PicoContainer
	NanoContainer
	HiveMind (1)
	HiveMind (2)
	IoC and Testing
	Limitations of Dependency Injection
	Other Runtime Containers
	Conclusion
	IoC Containers in Java – Part 2�Hands- on Exercises�
	Calculator Sample Application
	Calculator View Package
	Calculator Model Package
	Example Application
	Example After Dependency Injection
	Exercises
	References
	Contact Details

