
SPA 2010 – End users as software engineers – good idea? Yes But, No But: RAW WRITE UP
Why are you here – scenarios attendees interested in:

 We develop tools (mechano kit) for other developers to build tools for other end users. “End-end-users” kit content.

 End User Systems – something built by end users that is to be “productionised” – an MI system developed by end-users / the business.

==

These Days Anyone Can Build An Application

No No But

They cannot build the application framework ..everyone can have a great idea for an application

Some people are too stupid/incompetent to code ..we shouldn’t assume they can’t understand technical issues

Some applications are limited in scope and interoperability End users can customise and alter existing applications

The tools they use build the application Some basic skills are required but it is not too hard to develop them

Security can become an issue Although a lot of the barriers to software have been removed, some people lack
the intrinsic ability to do it

Anyone can build a mess but an application needs to be properly crafted

Many people do not have the motivation

You need to be able to develop a complete development environment

Language is too great a barrier

Every “language” created for this has failed in some way historically

Some languages / environs are just too darn tricky w/o training & experience

Yes Yes But

Kids are growing up more skilled and less technophobic They need to have the motivation to deal with the technology

Free technology and free advice available to everyone Users overwhelmed by choice of tools

Yes and people do it for fun End users assume they cannot build applications

Availability of very good sample code Only small application

Even a spreadsheet is an application and anyone can do that That doesn’t make it good application (x2)

The tools are much more available to all The application really has to want to be built

It’s not rocket science If you assume that an application is any piece of running software

Support environments help and check code produced It depends what you call an application

Online communities make it much easier

Yes: Debate notes made:

 Empowerment - Lowering of barriers to entry

 Components are there, Knowledge is there, Communities are there

 Wide range of technologies for all sorts of development for fun or for business

Formal Software Development Education Is Necessary For End User Developers

No No But

You learn by doing (x2) Experience vs Education – experience is more valuable

Why try to control it? Software development literacy is desirable

Doesn’t it risk us limiting creativity by imposing standards / beliefs It should be available to end users who wants some

Tools – drag and drop / metaphors There may be costs to not doing so (reliability, maintainability)

It’s obviously NOT the case

Most of what I know is self-taught

If it works it works, if it ain’t broke don’t fix it (it being the end user software
development process

Yes Yes But

It would increase their productivity Education doesn’t support the necessary creativity

End users need aspirations What is the benefit?

There are risks! Why bother?

Education is necessary for everyone Which Software development training is suitable for end users?

Yes for business applications – risk reduction Only for critical or v complex applications

Education about risks of software development Do we have suitable education

 I coded without training but I do better since training and mentoring

Brainstorming – why do they do it, why should we care.... Grouping the brainstorm...

Why they do it: Filling a Gap

To support specific scientific tasks

They see a market opportunity

I know my requirements and existing application doesn’t meet it

My needs are not met by IT department => DIY

Current software doesn’t meet needs

No specific apps for what they want to do

Why they do it: It’s FUN

It appears easier than doing something else

They’re techies at heart

Do end users see it as software? Or just something to get the job done

They care

Why they do it: Domain Knowledge / communicating requirements

Barrier to “having knowledge to be able to make the system” is too much for external developers

Communicating requirements is too difficult

Feel they understand more than an “outsider”

The ultimate “on site” customer

They don’t know what they want until they have written it

They don’t know what they want – try it out

Software that only works on bespoke hardware

Why they do it: IT not accessible / available

Can’t wait for IT department to do it

Can’t afford IT people to do it

No one else will do it for me x 3

I can’t get anyone in to do it

Why we care: IT Professionalism

Not tested thoroughly -> Risk of failure -> Risk of business impact

We care because we have professional responsibilities

We lose prestige

They might make bad code available to others

Why we care: Support and Maintenance

We care because we will have to make it REALLY work

Lack of IT support

We get asked to adopt and support their code

We care because we will end up maintaining it

We get called in when it falls over

How many end-users -> Impact and Support?

If original “developer” leaves, who looks after it?

Their software linked to & impacts on our systems

Why we care: IT Opportunity To Be GAINED

So we can produce software that facilitates it

There’s a revenue stream in correcting their mistakes

Why we care: IT Opportunity LOST

We lose business

Re-inventing the wheel

They buy our stuff (??)

Problem Tree: Lack / Difficulty in Communication of Domain Knowledge

Fear of appearing

stupid

It’s complex knowledge

Understanding domain requires years of study

I might be exposed as NOT having domain knowledge

There is no “Domain”

I don’t really understand the domain (yet)

Lack of formal education

Pain of making implicit

knowledge explicit

Domain experts can’t communicate with (normal!) people

Unconscious processes

I don’t want to share knowledge

I don’t think people will be able to understand

Prejudice

Peer status: You’re only worth talking to if you know what I know

Closed vocabulary / no shared language

Don’t know my requirements yet -> knowledge is OUTPUT of the development (as well as

the input)

False / Hidden assumptions

IMPACT

Encourages exploratory development

If requirements / development not shared – get single point of failure

Missing opportunity to share

Only expert can use it

Can only be supported by expert

No documentation

No quality review (ISO9000)

Usability of system

Closed shop, closed system

No community – missing opportunity to share

Availability, performance and supportablity

No audience

No one knows you are an expert, no external recognition

No validation and verification

Possible SOLUTIONS (very brief – running out of time)

System documentation should be created and reviewed

System / code should be documented as it develops

Tools to support documentation

Documentation done by apprentice

Standards

Classify risks

End user code is just a prototype

IT Buddy

Pair Programming

Quality Gates

View IT as an enabler

Encourage participation

Developed code ranges from DIRTY on one extreme to PROFESSIONAL at other end

