
Crazy Fast Build Times

Daniel Worthington-Bodart (http://dan.bodar.com/) BCS SPA 2012 Conference, 3 July 2012

Introduction
Talk is the result of an article published earlier this year, which caused a high level of hits on Dan’s web

site.

System builds that take 10 seconds used to be thought of as very acceptable. Not any more. You can

make improvements.

Measure everything!

Reason for the talk
We got here without realizing why. Picture a frog in water that gradually heats up – it never feels

uncomfortable. Build times gradually increase – who cares? At what point should you do something

about it?

History
In 1999, Kent Beck famously said that a ten-minute build was OK – anything shorter would not give you

time to get a coffee!

Today we are still in the same situation despite vastly faster machines. What gives?

Examples
A five-year old app with 150K lines of code took roughly 45 minutes to build: now 3 minutes or less.

A recent 20K app builds in 15 seconds, including unit tests, acceptance tests and deployment.

These techniques are not only applicable to green field developments.

Divide and Conquer
A very simple approach. Split the build into fast and slow portions. This doesn’t really solve the problem

– what tends to happen is that the broken long build never gets fixed.

Really, the application is telling you by the long build times that it needs to be split into components that

can be built separately. This will also allow you to test in a much more focused way.

http://dan.bodar.com/

Testing
Reduce duplication. Don’t keep testing the same workflow.

Production quality dummies – in-memory versions of collaborating components, such as databases. Run

unit tests on these and include just a small number of unit tests on the actual component, so that its

equivalence to the dummy can be confirmed.

Contract tests – police the APIs between components.

Libraries
Just reading in a single XML file to configure Spring for a given unit test took 14 seconds. It turned out

that it could be reduced to under a second by using lazy instantiation, which was amortised over

thousands of tests to drastically reduce the build time.

Replacing GWT with a simple REST framework reduced the amount of code by 86% and allowed use of

HTMLUnit for testing instead of Selenium. The pyramid of technology choices clearly has a huge impact

on build and test times.

Mixed-mode is possible – only use JavaScript for those tests that require it, for example.

Containers
Starting and stopping an application server per test case is a huge overhead.

Using a dynamic port per test case avoids wait times. An in-memory HTTP interface tests the units in

isolation from the server, which is even better.

Hardware
The same build on the same hardware runs 15% faster on Macs than on Windows, and another 15%

faster under Linux.

Future
Dan has looked for speed improvements elsewhere. The Java compiler can be invoked with switches to

avoid output of intermediate files to disk.

Question
Build tools used (Maven, etc) are not as fast as Ant – should you not use Ant instead? Probably not very

significant. Scala compilers need to be improved in efficiency. The main thing is to measure and to be

aware of tradeoffs available.

Why not just advise pushing as much as possible down to unit tests? Definitely the way to go; but you do

need end-to-end testing. Try to pick the right API level to run acceptance tests – e.g. drive programmatic

interfaces rather than HTTP interfaces. Dan’s organization no longer distinguishes between different

levels of tests. Key question about each test is “does it give us confidence”. Other important questions

are “is it reliable” and “does it give rapid feedback”?

What do you do with the time you’ve saved? Well, there’s never enough time, but an example story: an

Oracle database field was misused (null and empty string are not the same, but were treated as such by

the software). Caught in the final integration test. Shouldn’t the real Oracle database have been used in

testing all the time? Answer: over three months of development, the dummy database probably saved

£25000 of developer effort. The cost of fixing this late-detected defect was at most one developer day

(£1200). Definitely worthwhile.

Don’t rely on automated testing too much. Developers still have to try out the app from the UI to give a

level of confidence that the change has worked. And rapid deployment is a very important factor in

enabling them to do this.

How can you avoid build times drifting upwards again? Giving a shit. Someone on the team should be

the champion for this. Be passionate about keeping builds streamlined and lean. In Dan’s projects, the

build time is a very important statistic, which is tracked along with memory usage, story points

delivered, defects etc.

