Language Matters, and other lessons from 50 years

L Peter Deutsch, Aladdin Software, Menlo Park, CA

Introduction

This talk bears only a passing resemblance to the abstract in the conference notes. The focus is Language – not just programming language.

My background: have done a lot of things – mostly in system, framework or tool software. A lot of it was for long-lived software, not lash-ups or throwaways.

For a typical programming project, double the estimates given by the developers and scale up to the next largest measurement unit: e.g. 2 weeks (4 months.

Language matters

Because language is such a valuable way to think about so many things.

What is a language?

A system of utterances for conveying ideas or feelings (Webster). It has vocabulary, syntax (grammar) and semantics.

Utterance: any definable phenomenon in space and time. Need not be directly perceivable by the human senses! Many of them are not, particularly in computer programming languages.

Examples:

Space?

Time?

Sensory Modality

· Written English

yes

no

visual

· Spoken English

no

yes

auditory

· Movie

yes

yes

visual & auditory

· Movie script & score

yes

no

visual

· Data structure

yes

no

none

· Interface

no

yes

none

· Procedural code

no

yes

none

Data structure: “utterances” are the instances of that data structure. The same analogies can be made with interfaces (APIs) and procedural code.

Similarly, concepts like vocabulary and grammar can be mapped. See the notes that Peter is going to put on the Web.

Where do languages come from?

Every project is at least partly in the business of language creation. Some data structures, procedures and interfaces are usually defined. Ghostscript was the last really large project that Peter worked on (50K lines of C at the time he left it). C can be extended using macros, and the project made heavy use of it to handle garbage collection. The programmer has to learn the macro system just as much as C itself.

The higher-level the language, the less it lends itself to extension in this way. Languages without macro capability are consequently less malleable to the purpose.

Peter has developed a taxonomy classifying projects into levels (0 to 2.5 in 0.5 steps), where Level 0 is a simple shell script and level 3 is a major software program for some qualitatively new application area or environment – these typically create one or more new programming languages.

The design decision to express a particular facility as a construct of the programming language (3), a dialect-like extension (2) or set of interfaces (1) may change over time.

How does communication happen?

Shared context: e.g. waiter & customer in a restaurant. Every speech act assumes a lot: e.g. that soup is normally served at the start of dinner, that food is brought to the table etc.

In programming, pointers have meaning only within an address space; a key has meaning only within a collection; an LZW code has meaning only within the context of the preceding clear-text data stream.

When designing a data language, it is important to think carefully about establishing the context and how the necessary information will be transmitted/made available at the point of use.

Compilation

Spoken and hand-written English are easy for humans to input and output, difficult for computers. Printed English is prevalent in computing, because computers can easily produce it and humans can easily interpret it.

Compilation is a language-to-language “transduction”. It takes some context information and binds it into the transduced form. The less of an utterance is needed to determine its meaning, the easier it is to compile those utterances efficiently. LISP compilers didn’t have to look ahead beyond the current expression; optimising C or FORTRAN or Java compilers usually have to examine the entire program.

Compositionality

In natural languages, we can modify expressions using adjectives, adverbs, conjunctions. In programming languages, we have

· Expressions

· Sequential execution

· Invocation

· Functionals

· Exception trapping

· Subclassing

· Iterators (Python)

· Test-and-backtrack (Regex languages, SNOBOL)

Languages can be characterised by the compositional mechanisms they support. Python is powerful because it supports iterators as part of the language – this means that both producers and consumers in a pipeline are free to choose their optimal control structures.

Semantic compositional facilities are one of the deepest measures of language power and suitability.

Only Say It Once

Languages must not be designed such that

· Humans have to say the same thing more than once

· Humans must keep a set of utterances (especially widely separated) mutually consistent, and

· There are no tools to check the consistency

· The tools produce so many false alarms that they are ignored

Turn comments into mechanically checkable statements (e.g. assertions).

Even when one of the languages is human-readable documentation, it is worth making a serious effort to replace free-form documentation with a formal language that is checkable against part or all of the functional program.

Example: C makefiles have to be manually kept consistent with the #include statements in the program. So programmers came up with makefile generators. This just pushes the problem back one level: humans still have to remember to run the makefile generator.

Example: configuration information. The configure command exists, but you have to remember to run it and the only record of its parameters is the command line: so you have to write a script to run it and remember to run the script.

Given that computers are so good at handling finicky minutiae in mind-boggling detail, such tasks should never be delegated to humans.

Resources

Talk and slides will be on the Web at http://www.major2nd.com/users/ghost/papers/spa2008.html
Questions and Answers

Why do you like both Python and typed languages? Unlike Smalltalk, Python doesn’t constrain the attributes an object has. This gives the programmer possibly too much freedom. There is a new non-backward-compatible release of Python: Python 3K. This allows you to build your own type-checking system. But the productivity levers that Python gives you outweigh the disadvantage of the lacking type system.

Doesn’t Prolog give you the same try-and-backtrack mechanism that Snobol does? Yes. Don’t know about mercury.

What makes comments treacherous? The “only say it once” problem rears its ugly head. Comments don’t get maintained. Simple example: in Smalltalk, I built a tool because there is no type-checking even at the interface or abstract level. Types do not exist just to generate more efficient code – they exist to help the programmer. Programmers frequently insert comments stating what type of object they expect to be passed as method arguments in messages. Why not make these machine-checkable? A language was devised and a mechanical checker written. This found some problems even in mature code. This tool, which might be considered to implement a weak type system, enforces a minimum level of documentation for classes and gives a reasonable level of confidence that the documentation is up to date and complete.

James Robertson: most members of the Smalltalk programming community don’t care enough to want such a tool. The nature of Smalltalk development means that inappropriate messages or argument types tend to get caught early.

Peter: it’s still usually the case that turning free-form text into something more formal pays dividends in the longer term.

Given your preference for strong typing, have you ever considered Ada? No. I was a Smalltalk programmer before I was a C programmer. Type systems support formal proof of program correctness – guarantees fewer defects. There are different views about the costs of achieving that benefit. The one small to medium size Java project I was involved in (around 1.5K lines) convinced me that the type checking in Java is valuable – it exposed a couple of real design errors as well as detail errors. But in the early stages it was very restrictive – it didn’t allow design decisions about type to be deferred beyond the prototyping stage. Ada seems even more bureaucratic.

What about type inferencing? I’ve heard that phrase used in two different ways: for performance and for consistency checking. There may also be a third context: mechanically assisted checking of “documentation”. What does OCAML do?

The Smalltalk tool I wrote had a mode of operation where it would generate the type declarations for you, based on information it could gather about the usage of interfaces. Tended to be looser than the programmer perhaps intended.

What criteria can be used to decide what language to use in any given case? There are too many factors to make this a simple decision:

· Working environment

· Target environment (e.g. mobile phones)

· Domain (e.g. language systems or their available libraries particularly suitable for that domain – languages are like a tripod: language, tools, libraries. In fact there are probably another three legs: documentation, performance, community)

· Availability of the language in the project context (team capability?)

There is no “right answer”. Early in my career, the proportion of projects that could be considered interesting and worthwhile, but which could be done by a single person, was high – this is no longer the case.

What are your views on the power / danger of aspects? I’ve looked at these a little. I’m doing an experiment on equational programming (see yesterday’s BOF) and a facet of this project is going to provide aspects. I have the feeling that there’s less to aspects than meets the eye. There is however an important idea here. As languages become more powerful and expressive, they can be organised in a number of design dimensions. In the case of Smalltalk:

· Class hierarchy

· Categorisation

· Interfaces

Aspects add a fourth dimension. For humans, this might make the language harder to understand. We don’t yet know how to fit Aspects well with the other kinds of organising mechanisms we have available. Each aspect needs to be specified separately and the communication between the aspects needs to be explicit.

What’s the problem with Smalltalk? Three major reasons why Smalltalk made me feel uneasy for a long time:

1. Getting older, the Smalltalk browser’s inefficient use of screen space is increasingly irksome. Most of the time, you can see only part of one method. Using EMACS as the main environment for developing Python.

2. An image-based development environment means that you never really know what you’ve got. This makes distribution of applications very tricky. Sharing an image is prohibitive in most instances, and exporting smaller units is tricky and not easily reproducible, plus you’re back to the “saying it twice” problem when it comes to guaranteeing the right pre-requisites in the target image.

3. Documentation: Python provided superb documentation support for everything I wanted to do with the language. Very few discrepancies between the documentation and the working code. Easily accessed from the development environment.

