
Lessons Learned
Adopting Scala

JULY 2012

Where we spend a year working in Scala
and still can’t make up our minds

some things are fundamental,
some will change

Tuesday, 3 July 12

Who?

• Richard Care

• Duncan McGregor

Tuesday, 3 July 12

What?

The Uplink
Management System

• A Java, Wicket, Hibernate, Spring webapp to schedule
transmission of digital films to cinemas via satellite

• EU funded project, prototype into full app

• Algorithmically interesting

• Eclipse and TDD

• Maven and Git

• 1 man year of code when we started Scala

Now 38kLOC
25% Scala
35% test code

Tuesday, 3 July 12

What is Scala?

• An statically-typed OO/Functional hybrid
language running on the JVM

• A hell of a compiler

• An impressive runtime

• Still evolving

Other platforms are in
development

Tuesday, 3 July 12

Why Did We Migrate?

• Because we could

• Exploration So you don’t
have to!

Tuesday, 3 July 12

Why Might You
Migrate?

• Productivity

• FP benefits in algorithm design

• Immutable throughput for multi-core

• Expressiveness

• The Python Paradox

“if a company chooses to write its
software in a comparatively
esoteric language, they'll be able to
hire better programmers, because
they'll attract only those who cared
enough to learn it.” Paul Graham

Of course there are lots
of reasons not to migrate
- and lots of those will
come up!

Assuming that you are
starting from Java

Tuesday, 3 July 12

Why Might You
Migrate?

• Fun

• Learning

• CVtastic

Tuesday, 3 July 12

How Did We Migrate?

• The same way you would...

• Get Scala building

• New classes in Scala

• Migrate existing classes case-by-case

Tuesday, 3 July 12

Building

• Mix Java and Scala source in the same tree

• maven-scala-plugin deals with compilation

• Scala compiler can parse .java files, so circular
dependencies OK

• Scala-IDE aka Eclipse Scala plug-in

• maven-eclipse-plugin can be configured to generate
projects

Tuesday, 3 July 12

Other Build Tools are
Available

• Maven is slow for Scala, SBT faster

• Eclipse, ah Eclipse

The cool kids all use SBT,
but changing a working
build never made it high
enough on our list of
priorities

Tuesday, 3 July 12

Eclipse

• Eclipse support isn’t great, and won’t be this year

• Type and call hierarchy missing

• Virtually no refactoring

Pretty much just a
syntax highlighting
editor with click
through to types and
methods and build
errors.

Tuesday, 3 July 12

Ah Eclipse
• Clean to see some breaking changes

• Compile failure breaks build

• It is good enough

• IDEA is apparently better
best of the IDEs by all accounts, but letting go of our 3rd
point of contact with the rock didn’t seem like a good,
erm, idea

Think JBuilder in 2000

Tuesday, 3 July 12

New Classes

but first, new tests

Tuesday, 3 July 12

ScalaTest

• Test framework embracing many styles

• Recommended as a good route to trialling Scala,
but this carries its own risks

• Scala’s good support for literal lists, sets, maps,
strings and xml is a greater advantage in test than
production code

• We can still use Java to test Scala, and vice versa

In particular JMock etc

Tuesday, 3 July 12

New Classes

• With a few exceptions interop really is seamless

• call Java methods

• implement Java interfaces

• extend Java classes

• OO or functional style - Java or Scala collections

• REPL to trial use of APIs

Generics is the headache - Scala will almost
certainly improve your understanding of Java

Tuesday, 3 July 12

Migrating Existing
Classes

• Leave algorithm and types alone - move to Scala
syntax

• Move to Scala collections, accessors, immutability

StackOverflow
Based Development

Regex help

• These also applies to learning Scala

Tuesday, 3 July 12

So Far So Good
• At this point you just have a better Java

• More consistent

• Default immutability

• Better collections

• Less noisy

• More bang per line of code

• Fast

semi-colons, fields as constructor arguments, type inference

closures, list comprehensions, pattern matching

everything appears to be an object

Our test runs often faster for migrated code

Tuesday, 3 July 12

Except

• The build is much slower

• Tool support is worse

• Debugging is harder

• Error messages are sometimes cryptic

• Scala runtime source is opaque

• Scala is evolving

Lots of synthetic variables and methods, Step Into
practically useless

Java compiler is much better
at diagnosing the root error

CanBuildFrom, implicits

Idiomatic Scala is a moving target

Tuesday, 3 July 12

The Next Step
• Scala tools for making code more expressive

• Mixin traits

• Pattern matching

• Implicit conversions / parameters

• Operator overloading

• AST Macros

• Compiler plugins

Coming soon!

Once we have migrated
our Java idioms

Tuesday, 3 July 12

Trip Hazard

• Implicits make it practically impossible to predict
what code will be executed with what arguments

• “Running one’s brain like a compiler”

• “First language I’ve used that I felt I had to be a
computer scientist”

Worse still for macros
and compiler plugins

Tuesday, 3 July 12

Rabbit Holes

• Increasing expressiveness drags you in
Making it more and more expressive
because you can, where Java naturally
imposes limits

Tuesday, 3 July 12

Functional Style

• Recursive definition

• Lazy evaluation

• Monoids and Monads

• Continuations

• Type classes

We’ve only dabbled, but mention these here so as
not to forget that they are available when useful.

A problem is that many of the
Scalarati see the world in
these terms rather than OO

“All discussions on the Scala
mailing list will eventually
descend into Category Theory”

FP programmer is 2m to the right --->

Tuesday, 3 July 12

If it Doesn’t Work Out

• Java is still available

• Interop is so good that you could deprecate Scala
and return to Java leaving Scala impl alone

• Walled gardens of Scala

• Informed our Java style - Guava etc

Tuesday, 3 July 12

Summary

• Simultaneously impressed and horrified

• Addictive

• I wouldn’t hesitate to take a Scala contract

Like Coplien’s purple book C++

Tuesday, 3 July 12

Summary

• Starting a Scala project is less clear-cut

• You can live without cutting edge IDE support (?)

• Suitable for a bleeding edge team

• Is something simpler trying to get out?

We may be saying that
programmers should
adopt Scala, but
projects should not?

or attracting a cutting edge team

Tuesday, 3 July 12

Tuesday, 3 July 12

