SPA 2007 Anti-Patterns Workshop

Anti-Patterns of Project Execution

1. Lack of domain knowledge
A B C

2. Slavish devotion
D E

3. Consistently wrong estimates (x2)
F

4. Reduced testing
G

5. Too many “new” ’s
H I J

6. Unit testing paralysis (gold plated TDD)
D K

7. Partial usage of methodology
?A L

8. Blind coding - start coding too early
M

9. Blind signoff
J N ?A

10. Disconnected team – proxy user
C

11. Rogue developer
O

12. Methodology lapse
E

13. Impossible promises (x2) - timescale before scope
P Q

14. Poorly tailored methodology
E R

15. Spineless project manager
S

16. Lack of lifecycle involvement
Q T

17. Method structure creating excessive handovers

18. Testing pre-releases

19. Meetings madness

· Year-end roulette

Strategies

A. Domain Training
1

B. Proxy customer
1

C. Shared domain – aka shared understanding
10, 1

D. Timebox – aka focus the mind
2, 6

E. Get help – aka calling the experts
2, 7?, 12, 14

F. Estimation framework
3

G. Test first
4

H. Reduce “new” ‘s
5

I. Adjust resource/project to compensate
5

J. Build prototype
5, 9

K. Set exit criteria
6

L. Enforcement
7

M. Design before coding – aka informed coding
8

N. More incremental development
9

O. Pair programming
11

P. Truth to power
13

Q. Spreading the risks (align incentives with delivery)
13, 16

R. Right size methodology
14

S. Manage the PM
15

T. Multi-skilled team – keep people involved
16

U. –

V. –

Anti-Pattern Sheets

Name

Disconnected Team

AKA

Team has no contact with customer

What

People implementing the system (the team) have no contact with the customer. This leads to a poor understanding of what the system should do.

Why

Some people believe in the ‘relay’ approach to software development – it is the job of the analyst to capture requirements. “Developers should never talk to customers!”

How To Spot It

· Characterised by lots of activity involving documentation and specifications

· Months may pass before the developers are brought on-line

· Developers treated like ‘code monkeys’

How to Fix It

· Value people over process – trust developers to communicate – empower them

· Use user stories or lightweight use cases. To initiate conversations between developers and customer

· Question every document artifact and what value it adds.

Most Common Habitat (Context)

Any project run by Accenture

Exceptions

· Large waterfall projects with clearly-defined requirements e.g. building a submarine

· Off shore developments where communication is not availible.

__

Name

Rogue Developer

What

Developer not working or agreed tasks. Introducing unwanted features

Why

Lack of respect for the rest of the team and/or managers. May be caused by perceived ownership.

How To Spot It

· Works all day without ratcrashing with rest of team

· Vague about what working on

· Checks in rarely

Exceptions

One man team

Name

Unit-Testing Paralysis

AKA

Gold Plated TDD

What

Too much time spent developing unnecessary tests

Why

Don’t know when to stop. Class too complex (trying to do too much)

How to Spot It

Simple tasks taking too long

Most Common Habitat (Context)

Team inexperienced in TDD

Exceptions

Safety critical systems?

Name

Lack of domain knowledge

What

No-one on the team has the necessary domain knowledge to make the right decisions. No access to customer.

Why

Team afraid to talk to customer (avoid embarassment). Assumption that requirements are well defined and domain is well understood.

How to spot it

· Developers assume role of customer

· Delivered software does not meet end-user requirements

Most Common Habitat (Context)

Large organisations or external clients

Name

Partial Usage

AKA

Split team

What

Part of a project using a method (well); the rest ignoring or boycotting the method

Why

· Lack of selling/buy-in/…

· Lack of senior commitment

· Choosing the wrong method

· Poor implementation of method

How to Spot It

· People won’t deliver method deliverables

· People won’t review deliverables

· People working on “other” things

· Poor oversight/management feedback

· Hate surprises

How To Fix It

· Involve management (options)

· Communicate via local managers

· Training and answering questions

· Reassurance

· Reporting and communication for all

Most Common Habitat (Context)

· Evolving/growing companies

· Medium to large projects

· Separate functional groups

· Distinct skills needed

Exceptions

None (offshore vs onshore teams?)

Name

Slavish Devotion

AKA

Doing all the steps; too many documents

What

Team follows all steps in complex process without considering usefulness at each

Why

· Lack of understanding

· QA “Police”

· Certification

· Lack of experience

· Delivery contracts (wrong incentives)

· To discredit method

How to spot it

· Lots of useless (empty) documents

· People using Word, not IDE

· Little software delivery

How to fix it

· Training

· Tailoring

· Time box

· Consultancy (buy experience)

Most Common Habitat (Context)

· Large Companies

· V. Small companies

· Regulated industries

· Consultancies

· Government

Exceptions

Legal requirements – safety critical (?)

Name

Consistency about estimates

What

Poor estimation which is consistently inaccurate. Either too optimistic or pessimistic. Not concise

Why

· Over-optimistic developers

· Not clear what’s included

· Pressure from management/sales

· Poor estimation techniques

· Wrong people estimations

How to Spot It

· Developers over-run on coding

· “Nearly done” comments from developer

· Missing features

· Quality drops

· Finishing tasks too early

· Cut corners (reviews etc)

· Run out of budget

· Working long hours

How to Fix It

· Estimation techniques/tools

· Right resource estimating

· Compare to previous

Most Common Habitat (Context)

Sales/business driven

Name

Blind Coding

What

Rushing in to start coding without fully understanding the problem/domain/requirements

Why

· Time pressure

· Want to get things started

How to Spot It

· Bad code/unusable code

· Code without clear goal requirements

How to Fix It

· Stop and more analysis/understand

· Retrospective

· Developer get more requirements

· Better planning – methodology

Most Common Habitat (Context)

· Time pressure

· Small organisations/lack of process

· Inexperienced developers

Exceptions

· Experienced developers

· Prototype

· V. Small Projects

AKA

Technology creep

How to Fix It

Not too many “new” ‘s

AKA

Project scope not well defined

AKA

Reduced Testing Time

AKA

Late of understanding the methodology PM

AKA

Poorly tailored methodology

How to Fix It

Add methodology experts at bringing of project to e.g. well in the experts

Name

Spineless Project Manager

How To Spot It

· No team protection

· No push back on requirements

· Scope creep

How to Fix It

· Sack the PM

Most Common Habitat (Context)

· Big companies

· People connected with “saler”

AKA

Pre-releases for testing

Why

Time box programming

How to Fix It

Rigid QS testing it

Name

Users don’t understand their own requirements

How to Fix It

· Prototyping

· Reduced feature sets/Fast delivery cycles

· Beat down cultural barrier

· Story management support

· Domain training

Name

Too many “new” ‘s

AKA

Too many new things in the project

What

New project, new team, new management, new technology (or any combo of the above) at the same time

Why

· New company

· New “senior manager”

· Reorganisation

· Hot new thing (language or platform)

· Demanding customers

· Greed over common sense

How to Spot It

· Nothing looks or feels familiar

· Too many new faces

· None of the team know the technology

· “Evangelist” developers

How to Fix It

· Risk management – e.g. try new technology with an experienced team and if the project has to be new make it a small one

Most Common Habitat (Context)

New “small” companies e.g. start-ups.

Possible Strategy Sheets

Name

Shared Domain

AKA

Shared understanding of requirements

What

· Trust developers who communicate directly with the consumer

· Use user stories or lightweight-use cases to record requirements

Why

· Because the developers need to understand the requirement clearly – not through the interpretation of a business analyst

· Business analysts get it wrong

· Developers are the people implementing the solution

Benefits

· Better chance of getting it right

· Better chance of delivering valuable software sooner

· Less paper!

· Eliminates the need for individual business analyst, the understanding of what systems should do is shared

What Stops It From Working?

Project governance may require signed off specs

Works Best On (Context)

Agile software teams who are cross-functional, who can elicit requirements and communicate effectively

Probably Would Not Work On (Context)

(Off Shore) projects where the development team cannot meet with the customer

Steps to Implement

· Destroy unnecessary document artifacts

· Let developers score requirements through user stories to gain estimates

· Get developers to elaborate user stories through spoken communication with the customer and agree acceptance criteria

· Developer writes test for requirement and then codes solution

Name

Domain Training

What

Train development team in the domain

Why

· Requirements are not understood

· Customer is not co-located/availible to team

Benefits

· Requirements understood

· Questions can be asked in language of customer

What Stops it from Working

· Domain too complex

· No budget

· No time

· No resource (to train)

Works Best On (Context)

Smart developers

Probably Would Not Work On (Context)

High staff turnover. Domain too complex

Name

Proxy Customer

What

Someone who can speak the domain language biases with the customer/sponsor – involved in defining acceptance tests

Why

Sponsor/customer is insufficiently availible

Benefits

· Team can ask questions when they arise

· Delivers something much closer to customer requirements

What Stops It From Working?

· Proxy customer has insufficient domain knowledge

· Proxy customer not sufficiently close to customer

· Proxy customer has own agenda

Works Best On (Context)

Single customer

Probably Would Not Work On (Context)

· Not allowed to talk to users

· Too many project sponsors/stakeholders

Name

Part Programming

What

Pair up developers on tasks

Why

· Avoid rogue developers going off and do their own thing

· Increase visibility

Benefits

· Shared code ownership

· High quality code

What Stops It From Working?

Poor team dynamics

Works Best On (Context)

Agile Teams

Probably Would Not Work On (Context)

Company policy does not allow “wastes of resources”

Name

Get help

AKA

Call in the experts

What

Bring in experience to the project to guide/mentor or change course

Why

· You don’t have the experience

· You don’t have credibility

Benefits

· Immediate advice availible

· Objective third party view – independent view not affected by politics

What Stops It From Working?

· Too late

· Not enough expert resources

· Shallow involvement/low engagement

· Culture clash

· Mismatch of expertise

Works Best On (Context)

Flexible/Open minded environment

Probably Would Not Work On

· Government

· Heavily regulated environment

Steps to Implement

· Review current position

· Define terms of engagement

· Obtain budget

· Define success criteria

Name

Time box

AKA

Focus the mind

What

Bringing forward a delivery deadline and possibly adjusting the scope to give a realistic amount of work

Why

· Force focus and prioritisation

· Force focus on the delivery rather than process

Benefits

· Forces action

· Increase morale as delivery is a visible win

· Elimination of waste

What Stops It From Working?

· Unrealistic timebox and/or not changing the scope

· Lack of support or achieveing goal

· Staff resentment

· Lack of commitment/explanation to team

Works Best On (Context)

· Large project with high overhead process

· Early in the project process

Probably Would Not Work On (Context)

· Projects with pre-existing contractual constraints

· Project under-resourced

· Project team incompleted

Steps to Implement

· Assess realistic deliverable

· Estimate delivery time and resources

· Explain the process and reasons for it to the team. Involve team in planning

Name

Estimation Framework

What

Strategy to improve estimates. Introduce estimation techniques/framework e.g. ensure correct people do estimation e.g. play “planning poker”

Why

Prevent project overrun

Benefits

· Deliver project within budget

· Team morale improves

· Better utilisation of resources

· Increase outside confidence in the team

· Introduce larger team consistency

What Stops It From Working?

· Lack of experience

· Continued external pressures

· Getting buy-in from developers who might be benefitting from confusion

· Project manager not protecting team and not reporting correctly

Works Best On (Context)

· Organisations where people are willing to change

· Technical organisations

Probably Would Not Work On (Context)

· Organisations where management does not trust developers

· Lack of management buy-in

· Heavily reliant on possibly unavailible key people

Steps To Implement

· Agree the need for a remedy and get buy-in

· Research estimation techniques

· Agree on an approach and scope for estimates

· Put approach into action

· Review success and monitor

AKA

Thoughtful coding. Informed coding; design before coding

What

· Analysis of problem

· Design solution

Why

Resulting code fit for purpose

Benefits

· No wasted time and resources

· Neater code – less refactoring

· More efficient code

· Team morale

What Stops It from Working?

· Time pressure

· Pressure to deliver something ‘tangible’

· Previous ‘natural mindset’ unchanged

Works Best On (Context)

· Clear goals and requirements

· Ability to communicate with stakeholders during the process

· Change-oriented organisation

· Knowledge of design solutions and requirements

Probably Would Not Work On (Context)

· Lack of experience of design/requirements

· Lack of access to stakeholders about requirements

· Impatience with lack of visible process

Steps To Implement

· Make sure project plan includes time for design

· Training or design

· Buy-in for rest of organisation

AKA

Limit number of “new” ‘s

Works Best On (Context)

· New project

· New team

· New technology

· New customer

· New management

AKA

Lose a “new” of cost or for free

Nick Rozanski / Andy Longshaw

Page 6 of 12

