Style and Taste in writing Fit documents

Mike Hill, Steve Freeman

Example-Driven Project Lifecycle

Fit comes in for acceptance-test driven development (also known by many other names). Rules are harder for users to understand than concrete examples. Attempts to express specifications formally tend to result in unreadable documents. Example cases tend also to bring out the edge cases.

Having specified sets of examples, it is then nice to automate running them as tests. This makes it harder for the specification and the acceptance tests to drift apart.

Fit as a tool is much less important than the conversation with the customer that results from compiling the spec.

Purpose of this session

We’ll look at some examples of Fit tables and look at ways of improving them.

Column fixture: each row of the table is an independent example, with no implied ordering. Headings have brackets on columns that represent functions that return a value. Input values are shown in white, outputs in green (expected value returned) or red (unexpected value returned).

The trick with Fit is making that representation bridge to the software under test. But that isn’t the point of this session – just assume that the developer team can do that.

Row fixture: matches combinations of values. Headings don’t have brackets.

Action Fixture: performs a series of steps, with the output typically on the last row.

Some examples

http://www.mandu.co.uk/spa2008/
Example 1: Verbosity

· Converting a series of action fixtures to a column fixture highlights missing test cases.

· Could have two result columns – one for the PAYG and one for Silver case. This makes it even more obvious that you’ve covered every case.

· Editing HTML is not an ideal way of producing the test cases.

· It is important to name the test columns appropriately for understandability.

· The exercise is similar to data normalisation.

Example 2: Tangled examples

You see some examples where

· It is unclear what the point of the test is

· It is hard to diagnose what’s wrong

· There are missing abstractions in the document

In this example, there may be interdependencies between columns – it is hard to see what depends on what. Why for examples are there result cells that are empty?

Fit documents really should be used for communication first and foremost, rather than for testing. So in this case, split one table into four – this clarifies which outputs depend on which inputs and separates the concerns. The resulting tables are just two or four rows each (e.g. mileage rate depends on type of car only).

Example 3: Unnecessary detail

Some tables show lots of inputs and only one output that gets checked. This is particularly obvious if the parameter in one column is always the same. Testers want to see this. A prior context step might be used to make this explicit.

Another clue is commentary that explains the relationship between some columns – this should probably be a separate test. In this case, calculate offerings (line speeds) from fixed-rate and adaptive-rate capabilies. Directory number and wholesaler ID becomes irrelevant.

Example 4: Poor naming

Testing a web search tool, we should separate tests of appearance / rendering from tests of the actual search functionality.

The second table should be a column fixture relating search terms to expected results. Always aim for a higher level of abstraction if possible. Don’t let implementation details leak into the Fit tables.

FitLibrary has a nicer way of doing workflows than the Action Fixture. But even without that, you can present the test more like a use case than a record/replay script.

Lessons Learned

· Communication trumps testing (for Fit)

· Complex end-to-end scenarios tested during acceptance are probably better expressed in something other than Fit

· Fit is much better at expressing business rules by example

· There are many other types of test that you still have to do and for which Fit is not ideal

· Grow your own language

· Part of being an expert is having a language that lets you go faster

· Think of Fit as a framework in which you can create your language

· Avoid difficult puzzles

· Make the failure modes clear

· Focused, narrow examples clarify the diagnostics

· There will be conflicts

· This is not a bad thing – argument brings clarification

· Avoid mini-waterfall!

· Communicating via the Fit documents only leads you towards this trap

· And you don’t even get good documents

· Keep it live

· Put it in the build

