
Keeping Passwords Private with OAuth 

Nick Rozanski and Eoin Woods, SPA2014, Tuesday 1st July, 2014 9:15am – 12:00pm 

Problem Statement 
Cloud-based services are often accessed by third-party programs (e.g. Dropbox). You don’t want to 
trust the app with your username and password. This problem is called cross-domain authentication. 
 
More interesting problem statement – special car keys that allow the owner to provide limited 
authorisations to e.g. children, valets… Getting Started with OAuth 2.0, Boyd 

OAuth 
Standard protocol 
Client which implements the protocol uses a specially negotiated key and secret to gain access to 
secured services or data. The client program never sees the user’s credentials, which are submitted 
only to the service itself as part of the one-off authorization process. 

Benefits and Criticisms 
 Reduces need to trust the client 

o Resource server can constrain access to data and services – e.g. a specific folder on 
Dropbox 

 Decouples resource access from password changes 

 Allows user to revoke access without changing password 

 Helps avoid users becoming desensitised to phishing, password-harvesting etc. 
 
But 

 OAuth is about authorisation, not identity (unlike Kerberos, for example) – anyone with the 
secret and key can access the resources 

 OAuth 2 doesn’t require signatures to identify endpoints 
o Developer can accidentally send credentials to a malicious endpoint 
o Partly mitigated by using SSL 
o Still under development in the standard 

 OAuth 2 is “complicated” 

A Brief History 
 1.0 – 2007-2010 (Eran Hammer) – early adopter Twitter 

 2.0 – 2012 – not backward compatible, Hammer very critical of “committee patchwork” 

 About 80 service providers use one or other OAuth standard: Amazon, Google, Facebook, 
Microsoft, Yahoo, Dropbox, Zendesk… 

Terminology 
 Resource owner – grants access 

 Protected resource – data or service to be protected 

 Resource server – hosts the protected resource 

 Authorisation server – performs resource authorisation actions 

 Client – a program that makes OAuth calls to perform actions on protected resources on 
behalf of the resource owner 



 Registration – process whereby a developer sets up key attributes of their application and is 
given an access token in return 

 Workflow 

Application Registration 
OAuth 2 requires clients (specifically, their developers) to register with the authorization server so 
that client requests can be properly identified. Service providers normally provide some kind of web 
console to do this, e.g. Google API Console 
Once registered, the client is issued with a client id and client secret. During registration you have to 
specify one or more allowable redirect URLs or URIs. The client may only redirect to one URI in the 
“finish” step of authorization. 

Authorization Workflow 
OAuth defines four workflows, two of which are authorisation workflows. We look at the “no-
redirect” authorization token workflow first. 

No-Redirect workflow 
User accesses client. Client redirects to Dropbox Auth Server. User prompted to log into Dropbox (if 
not already logged in). Authorisation page displayed by auth server that asks the user whether to 
allow the access to the specified dropbox resource. If OK, auth code displayed by Dropbox, which 
user has to copy/paste into the client. Client then requests an access token from auth server, using 
the code as proof of permission, and if received, redirects to the FINISH URI. 

Redirect workflow 
Very similar, but instead of displaying the auth code to the user, the auth server redirects the client 
to a web page that passes the access token to the client (e.g. in a cookie – though for the exercise 
today, a disk file is used, which the client can read). 

Exercise 
Part 1: authorise with DropBox using OAuth2 (both workflows) 
Part 2: run various commands to display or manipulate DropBox files. 

Setting up 
 Sign up with DropBox 

 Clone Nick’s git repo https://github.com/rozanski/bcs_spa2014 
o Demo directory contains full working code 
o Exercise contains skeleton code to fill in 

 Follow the instructions in the README and the README for chosen implementation 
language – Java, Ruby, Python or whatever 

 Run unit tests to make sure everything works 

 Start coding (follow the TODO tags in the code) 

Conclusions 
Exercise was very good in teaching the basics rapidly. 
OAuth 2 is frequently combined with OpenID. There doesn’t seem to be much in the way of 
alternatives (possibly Kerberos). 
GitHub provides some good example code. 

https://github.com/rozanski/bcs_spa2014


DropBox recently introduced two-factor authentication. You can use Google Authenticator or it can 
send you a text. 


