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Understand the functional paradigm, 
lazy evaluation and Monadic IO

Learn some key Haskell idioms and 
style tips

Experience software development in 
Haskell
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Haskell tutorial
Demo of maths functions
Sales pitch... though we are passionate
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 Introduction
Code scenarios
 Issues and pitfalls

Break

Live coding
Wrap up
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Purity
Type system
Laziness

Rich syntax
Sophisticated optimizer
Extensible

Extensive abstract libraries

5Tuesday, 18 May 2010



Purity
Type system
Laziness

Rich syntax
Sophisticated optimizer
Extensible

Extensive abstract libraries
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A lazily evaluated, pure 
functional language
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max(x + 5, y + 5)

(Not Haskell)

(x + 5) * (y + 5)
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(x != 0) && (y / x > 0)

(Not Haskell)
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foo x z = if x /= 0
                then (z > 0)

              else False
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foo x z = if x /= 0
                then (z > 0)

              else False
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foo x z = if x /= 0
                then (z > 0)

              else False

foo x (y `div` x)
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foo x z = if x /= 0
                then (z > 0)

              else False

foo x (y `div` x)

foo x (div y x)
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Can define your own control structures:

bool :: a -> a -> Bool -> a
bool t _ True  = t
bool _ f False = f

...replaces some uses of macros
contents <- bool
              readFile
              (throwError . ("Can't read:"++))
              isAdministrator file
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[42, 27, head [], 3]
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[42, 27, head [], 3] !! 3
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[42, 27, head [], 3] !! 3

allSame xs = all (== head xs) xs
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doubling a = 
  a : doubling (a * 2)

take 9 $ doubling 3

[3,6,12,24,48,96,192,384,
768]
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Opportunities to be lazy
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Given a list of names print each one 
with its index in the list.

Q: How would you do this 
imperatively?
Q: How would you do this functionally?
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names = ["Fred","Jim","Bob"]

report ns = rep 1 ns
  where
    rep _ [] = []
    rep i (n:ns) = (printf "Name %d is %s." i n) :
                   (rep (i+1) ns)
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names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
  [1..length names]
  names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is 
Bob."]
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names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
  [1..length names]
  names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is 
Bob."]

zipWith (printf "Name %d is %s.") [1..] names

23Tuesday, 18 May 2010



names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
  [1..length names]
  names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is 
Bob."]

zipWith (printf "Name %d is %s.") [1..] names

Q: Why is using an infinite list better?
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Find the top 50 elements of a 50000 
list.

Q: What is the obvious way to do this?
Q: Would there be any issues with that 
approach?
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qsort []     = []
qsort (x:xs) = qsort (filter (> x) xs) ++
               [x] ++
               qsort (filter (<= x) xs)
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qsort []     = []
qsort (x:xs) = qsort (filter (> x) xs) ++
               [x] ++
               qsort (filter (<= x) xs)

top50 = take 50 . qsort
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qsort []     = []
qsort (x:xs) = qsort (filter (> x) xs) ++
               [x] ++
               qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen
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qsort []     = []
qsort (x:xs) = qsort (filter (> x) xs) ++
               [x] ++
               qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen

qsort vals -- Takes 0.50s in GHCi
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qsort []     = []
qsort (x:xs) = qsort (filter (> x) xs) ++
               [x] ++
               qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen

qsort vals -- Takes 0.50s in GHCi
top50 vals -- Takes 0.14s in GHCi
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 Recursive function:
len xs = case xs of
           [] -> 0
           _  -> 1 + len (tail xs)
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 Cyclic values:
ones       = 1 : ones
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 Cyclic values:
ones       = 1 : ones 1

ones
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 Cyclic values:
ones       = 1 : ones

alternates = 1 : 0 : alternates

1

ones
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 Cyclic values:
ones       = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
       : "May" : "Jun" : "Jul" : "Aug"
       : "Sep" : "Oct" : "Nov" : "Dec" 
       :  months

1

ones
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 Cyclic values:
ones       = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
       : "May" : "Jun" : "Jul" : "Aug"
       : "Sep" : "Oct" : "Nov" : "Dec" 
       :  months

nMonthsAfter m n = 
  dropWhile (/=m) months !! n

1

ones
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 Cyclic values:
ones       = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
       : "May" : "Jun" : "Jul" : "Aug"
       : "Sep" : "Oct" : "Nov" : "Dec" 
       :  months

nMonthsAfter m n = 
  dropWhile (/=m) months !! n

nMonthsAfter "May" 25 ----> "Jun"

1

ones
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Define two types:
- Cat has a name and a victim (Mouse).
- Mouse has a name and a tormentor 
(Cat).

Create instances:
- Cat: Tom whose victim is Jerry.
- Mouse: Jerry whose tormentor is Tom.

Q: How would you do this imperatively?
Q: Could laziness help?
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data Cat = Cat {
        cname  :: String
        victim :: Mouse
      }
      deriving Show

data Mouse = Mouse {
        mname     :: String
        tormentor :: Cat
      }
      deriving Show
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data Cat = Cat {
        cname  :: String
        victim :: Mouse
      }
      deriving Show

data Mouse = Mouse {
        mname     :: String
        tormentor :: Cat
      }
      deriving Show

tom   = Cat   {cname = "Tom",   victim    = jerry}
jerry = Mouse {mname = "Jerry", tormentor = tom}
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Define an infinite list of the powers
of 2 using a cyclic definition

Q: How would you do this?
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powersOf2 = 1 : map (* 2) powersOf2

[1,2,4,8,16,32,64,128,256,512,1024,20
48,4096,8192,16384,32768,65536,131072
,262144,524288...
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powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2
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powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2

tail 
powersOf2

1 map (*2) (tail powersOf2)2
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powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2

tail 
powersOf2

1 map (*2) (tail powersOf2)2

tail (tail 
powersOf2)

1 map (*2) (tail (tail powersOf2))2 4
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Fibonnaci numbers are: 
[1,1,2,3,5,8,13,21,34,55,89,14
4,233,377,610,987,1597,2584,4
181,6765...

Q: How would find the ‘nth’ one?
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Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
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Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...
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Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...

fib' n = fibs !! n
  where
    fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
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Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...

fib' n = fibs !! n
  where
    fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

...fib’ 4000 takes 0.01s according to GHCi:
645748844909481735313769490153695956444139006401513427084075775981772103
590340889144494778072872417437607415237838188974992270097421831524820190
627635507987437042751068564702163075936230573885067767672020696704775060
888952943005092911660239478668417638539538139822817039366653699227090953
080068213995247807210499558291914070299436220877792964591740126101486595
203811704525911413319493360805771417086457836066360819419152173551158109
939739457834939838445927496726613615480616157565958189443176199220973699
176769740582063418920881445493379744229521401326215683407010162734227278
277627261530663030930529820517574447424280331075224194662196557804131017
595052316172225782924860810023912187851892996757577669202694023487336446
627257747177409240688283001864394259217610825454631646288077026537526196
16157324434040342057336683279284098590801501
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Read lines from a large file, reverse the 
characters of each line and write the 
result to a new file.

Q: How would you do this imperatively?
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main = do
  i <- openFile "input"  ReadMode
  o <- openFile "output" WriteMode
  untilM_ (hIsEOF i) $ do
    l <- hGetLine i
    hPutStrLn o (reverse l)
  hClose i
  hClose o
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main = do
  i <- openFile "input"  ReadMode
  o <- openFile "output" WriteMode
  untilM_ (hIsEOF i) $ do
    l <- hGetLine i
    hPutStrLn o (reverse l)
  hClose i
  hClose o

Q: How could you do it more elegantly?
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main = do
  i <- readFile  "input"
  let o = unlines . map reverse . lines $ i
  writeFile "output" o

Code is simpler...
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main = do
  i <- readFile  "input"
  let o = unlines . map reverse . lines $ i
  writeFile "output" o

Code is simpler... and still scalable.
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main = do
  i <- readFile  "input"
  let o = unlines . map reverse . lines $ i
  writeFile "output" o

Code is simpler... and still scalable.

main = interact
         (unlines . map reverse . lines)

...if just want stdin / stdout, the above is even simpler
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Debugging
Lazy IO gotchas - eg file handles
Performance

Harder to understand / predict
Benchmarking
Performance cost to creating thunks
Space Leaks
Too much laziness
Too little laziness
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foldl (+) 0 [1..100000]
5000050000
       8,216,376 bytes copied during GC
       1,706,916 bytes maximum residency (4 sample(s))
  %GC time      64.3%  (61.7% elapsed)
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foldl (+) 0 [1..100000]
5000050000
       8,216,376 bytes copied during GC
       1,706,916 bytes maximum residency (4 sample(s))
  %GC time      64.3%  (61.7% elapsed)

foldl' (+) 0 [1..100000]
5000050000
           4,180 bytes copied during GC
           3,732 bytes maximum residency (1 sample(s))
  %GC time       2.2%  (2.8% elapsed)
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foldl (+) 0 [1..100000]
5000050000
       8,216,376 bytes copied during GC
       1,706,916 bytes maximum residency (4 sample(s))
  %GC time      64.3%  (61.7% elapsed)

foldl' (+) 0 [1..100000]
5000050000
           4,180 bytes copied during GC
           3,732 bytes maximum residency (1 sample(s))
  %GC time       2.2%  (2.8% elapsed)

foldl (+) 0 [1..100000]  -O2  (this is strictness analysis)

5000050000
           4,152 bytes copied during GC
           3,716 bytes maximum residency (1 sample(s))
  %GC time       2.3%  (3.1% elapsed)
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 f = (“Report\n”++) . unlines . map show

61Tuesday, 18 May 2010



 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs
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 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs

 if not (null xs) then f (tail xs) else f xs                                    
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 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs

 if not (null xs) then f (tail xs) else f xs                                    

 f (if not (null xs) then tail xs else xs)                                    
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A larger example of laziness
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Player 1 chooses a secret sequence of 
4 tokens from a pool of 6 (no repeats).

Player 2 makes a guess.
Player 1 scores the guess indicating:

• How many are the correct token in the correct 
position

• How many are the correct token in the wrong 
position

Play continues until the secret is 
guessed or player 2 gives up.
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...
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...
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...

2   1
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...

2   1
3   0
3   0
2   2
2   1
2   1
2   1
3   0
2   0
2   1
3   0
2   0
2   2
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...

2   1
3   0
3   0
2   2
2   1
2   1
2   1
3   0
2   0
2   1
3   0
2   0
2   2
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...

2   1
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...

2   1

1   2
3   0
2   1

2   0
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...

2   1

1   2
3   0
2   1

2   0
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Lazy evaluation
 Infinite structures
Avoiding unnecessary work
Cyclic definitions
Memoization
Lazy IO
Circular programming
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