
Peter Marks and Ben Moseley

1Tuesday, 18 May 2010

Understand the functional paradigm,
lazy evaluation and Monadic IO

Learn some key Haskell idioms and
style tips

Experience software development in
Haskell

2Tuesday, 18 May 2010

Haskell tutorial
Demo of maths functions
Sales pitch... though we are passionate

3Tuesday, 18 May 2010

 Introduction
Code scenarios
 Issues and pitfalls

Break

Live coding
Wrap up

4Tuesday, 18 May 2010

Purity
Type system
Laziness

Rich syntax
Sophisticated optimizer
Extensible

Extensive abstract libraries

5Tuesday, 18 May 2010

Purity
Type system
Laziness

Rich syntax
Sophisticated optimizer
Extensible

Extensive abstract libraries

6Tuesday, 18 May 2010

A lazily evaluated, pure
functional language

7Tuesday, 18 May 2010

max(x + 5, y + 5)

(Not Haskell)

(x + 5) * (y + 5)

8Tuesday, 18 May 2010

(x != 0) && (y / x > 0)

(Not Haskell)

9Tuesday, 18 May 2010

foo x z = if x /= 0
 then (z > 0)

 else False

10Tuesday, 18 May 2010

foo x z = if x /= 0
 then (z > 0)

 else False

11Tuesday, 18 May 2010

foo x z = if x /= 0
 then (z > 0)

 else False

foo x (y `div` x)

12Tuesday, 18 May 2010

foo x z = if x /= 0
 then (z > 0)

 else False

foo x (y `div` x)

foo x (div y x)

13Tuesday, 18 May 2010

Can define your own control structures:

bool :: a -> a -> Bool -> a
bool t _ True = t
bool _ f False = f

...replaces some uses of macros
contents <- bool
 readFile
 (throwError . ("Can't read:"++))
 isAdministrator file

14Tuesday, 18 May 2010

[42, 27, head [], 3]

15Tuesday, 18 May 2010

[42, 27, head [], 3] !! 3

16Tuesday, 18 May 2010

[42, 27, head [], 3] !! 3

allSame xs = all (== head xs) xs

17Tuesday, 18 May 2010

doubling a =
 a : doubling (a * 2)

take 9 $ doubling 3

[3,6,12,24,48,96,192,384,
768]

18Tuesday, 18 May 2010

Opportunities to be lazy

19Tuesday, 18 May 2010

Given a list of names print each one
with its index in the list.

Q: How would you do this
imperatively?
Q: How would you do this functionally?

20Tuesday, 18 May 2010

names = ["Fred","Jim","Bob"]

report ns = rep 1 ns
 where
 rep _ [] = []
 rep i (n:ns) = (printf "Name %d is %s." i n) :
 (rep (i+1) ns)

21Tuesday, 18 May 2010

names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
 [1..length names]
 names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is
Bob."]

22Tuesday, 18 May 2010

names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
 [1..length names]
 names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is
Bob."]

zipWith (printf "Name %d is %s.") [1..] names

23Tuesday, 18 May 2010

names = ["Fred","Jim","Bob"]

zipWith (printf "Name %d is %s.")
 [1..length names]
 names

["Name 1 is Fred.", "Name 2 is Jim.", "Name 3 is
Bob."]

zipWith (printf "Name %d is %s.") [1..] names

Q: Why is using an infinite list better?

24Tuesday, 18 May 2010

Find the top 50 elements of a 50000
list.

Q: What is the obvious way to do this?
Q: Would there be any issues with that
approach?

25Tuesday, 18 May 2010

qsort [] = []
qsort (x:xs) = qsort (filter (> x) xs) ++
 [x] ++
 qsort (filter (<= x) xs)

26Tuesday, 18 May 2010

qsort [] = []
qsort (x:xs) = qsort (filter (> x) xs) ++
 [x] ++
 qsort (filter (<= x) xs)

top50 = take 50 . qsort

27Tuesday, 18 May 2010

qsort [] = []
qsort (x:xs) = qsort (filter (> x) xs) ++
 [x] ++
 qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen

28Tuesday, 18 May 2010

qsort [] = []
qsort (x:xs) = qsort (filter (> x) xs) ++
 [x] ++
 qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen

qsort vals -- Takes 0.50s in GHCi

29Tuesday, 18 May 2010

qsort [] = []
qsort (x:xs) = qsort (filter (> x) xs) ++
 [x] ++
 qsort (filter (<= x) xs)

top50 = take 50 . qsort

vals <- take 50000 . randoms <$> newStdGen

qsort vals -- Takes 0.50s in GHCi
top50 vals -- Takes 0.14s in GHCi

30Tuesday, 18 May 2010

 Recursive function:
len xs = case xs of
 [] -> 0
 _ -> 1 + len (tail xs)

31Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones

32Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones 1

ones

33Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones

alternates = 1 : 0 : alternates

1

ones

34Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
 : "May" : "Jun" : "Jul" : "Aug"
 : "Sep" : "Oct" : "Nov" : "Dec"
 : months

1

ones

35Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
 : "May" : "Jun" : "Jul" : "Aug"
 : "Sep" : "Oct" : "Nov" : "Dec"
 : months

nMonthsAfter m n =
 dropWhile (/=m) months !! n

1

ones

36Tuesday, 18 May 2010

 Cyclic values:
ones = 1 : ones

alternates = 1 : 0 : alternates

months = "Jan" : "Feb" : "Mar" : "Apr"
 : "May" : "Jun" : "Jul" : "Aug"
 : "Sep" : "Oct" : "Nov" : "Dec"
 : months

nMonthsAfter m n =
 dropWhile (/=m) months !! n

nMonthsAfter "May" 25 ----> "Jun"

1

ones

37Tuesday, 18 May 2010

Define two types:
- Cat has a name and a victim (Mouse).
- Mouse has a name and a tormentor
(Cat).

Create instances:
- Cat: Tom whose victim is Jerry.
- Mouse: Jerry whose tormentor is Tom.

Q: How would you do this imperatively?
Q: Could laziness help?

38Tuesday, 18 May 2010

data Cat = Cat {
 cname :: String
 victim :: Mouse
 }
 deriving Show

data Mouse = Mouse {
 mname :: String
 tormentor :: Cat
 }
 deriving Show

39Tuesday, 18 May 2010

data Cat = Cat {
 cname :: String
 victim :: Mouse
 }
 deriving Show

data Mouse = Mouse {
 mname :: String
 tormentor :: Cat
 }
 deriving Show

tom = Cat {cname = "Tom", victim = jerry}
jerry = Mouse {mname = "Jerry", tormentor = tom}

40Tuesday, 18 May 2010

Define an infinite list of the powers
of 2 using a cyclic definition

Q: How would you do this?

41Tuesday, 18 May 2010

powersOf2 = 1 : map (* 2) powersOf2

[1,2,4,8,16,32,64,128,256,512,1024,20
48,4096,8192,16384,32768,65536,131072
,262144,524288...

42Tuesday, 18 May 2010

powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2

43Tuesday, 18 May 2010

powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2

tail
powersOf2

1 map (*2) (tail powersOf2)2

44Tuesday, 18 May 2010

powersOf2 = 1 : map (* 2) powersOf2

1 map (*2) powersOf2

powersOf2

tail
powersOf2

1 map (*2) (tail powersOf2)2

tail (tail
powersOf2)

1 map (*2) (tail (tail powersOf2))2 4

45Tuesday, 18 May 2010

Fibonnaci numbers are:
[1,1,2,3,5,8,13,21,34,55,89,14
4,233,377,610,987,1597,2584,4
181,6765...

Q: How would find the ‘nth’ one?

46Tuesday, 18 May 2010

Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

47Tuesday, 18 May 2010

Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...

48Tuesday, 18 May 2010

Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...

fib' n = fibs !! n
 where
 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

49Tuesday, 18 May 2010

Q: How would you do this in Haskell?

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib 30 takes about 4.3s
fib 40 will probably take about an hour...

fib' n = fibs !! n
 where
 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

...fib’ 4000 takes 0.01s according to GHCi:
645748844909481735313769490153695956444139006401513427084075775981772103
590340889144494778072872417437607415237838188974992270097421831524820190
627635507987437042751068564702163075936230573885067767672020696704775060
888952943005092911660239478668417638539538139822817039366653699227090953
080068213995247807210499558291914070299436220877792964591740126101486595
203811704525911413319493360805771417086457836066360819419152173551158109
939739457834939838445927496726613615480616157565958189443176199220973699
176769740582063418920881445493379744229521401326215683407010162734227278
277627261530663030930529820517574447424280331075224194662196557804131017
595052316172225782924860810023912187851892996757577669202694023487336446
627257747177409240688283001864394259217610825454631646288077026537526196
16157324434040342057336683279284098590801501

50Tuesday, 18 May 2010

Read lines from a large file, reverse the
characters of each line and write the
result to a new file.

Q: How would you do this imperatively?

51Tuesday, 18 May 2010

main = do
 i <- openFile "input" ReadMode
 o <- openFile "output" WriteMode
 untilM_ (hIsEOF i) $ do
 l <- hGetLine i
 hPutStrLn o (reverse l)
 hClose i
 hClose o

52Tuesday, 18 May 2010

main = do
 i <- openFile "input" ReadMode
 o <- openFile "output" WriteMode
 untilM_ (hIsEOF i) $ do
 l <- hGetLine i
 hPutStrLn o (reverse l)
 hClose i
 hClose o

Q: How could you do it more elegantly?

53Tuesday, 18 May 2010

main = do
 i <- readFile "input"
 let o = unlines . map reverse . lines $ i
 writeFile "output" o

Code is simpler...

54Tuesday, 18 May 2010

main = do
 i <- readFile "input"
 let o = unlines . map reverse . lines $ i
 writeFile "output" o

Code is simpler... and still scalable.

55Tuesday, 18 May 2010

main = do
 i <- readFile "input"
 let o = unlines . map reverse . lines $ i
 writeFile "output" o

Code is simpler... and still scalable.

main = interact
 (unlines . map reverse . lines)

...if just want stdin / stdout, the above is even simpler

56Tuesday, 18 May 2010

Debugging
Lazy IO gotchas - eg file handles
Performance

Harder to understand / predict
Benchmarking
Performance cost to creating thunks
Space Leaks
Too much laziness
Too little laziness

57Tuesday, 18 May 2010

foldl (+) 0 [1..100000]
5000050000
 8,216,376 bytes copied during GC
 1,706,916 bytes maximum residency (4 sample(s))
 %GC time 64.3% (61.7% elapsed)

58Tuesday, 18 May 2010

foldl (+) 0 [1..100000]
5000050000
 8,216,376 bytes copied during GC
 1,706,916 bytes maximum residency (4 sample(s))
 %GC time 64.3% (61.7% elapsed)

foldl' (+) 0 [1..100000]
5000050000
 4,180 bytes copied during GC
 3,732 bytes maximum residency (1 sample(s))
 %GC time 2.2% (2.8% elapsed)

59Tuesday, 18 May 2010

foldl (+) 0 [1..100000]
5000050000
 8,216,376 bytes copied during GC
 1,706,916 bytes maximum residency (4 sample(s))
 %GC time 64.3% (61.7% elapsed)

foldl' (+) 0 [1..100000]
5000050000
 4,180 bytes copied during GC
 3,732 bytes maximum residency (1 sample(s))
 %GC time 2.2% (2.8% elapsed)

foldl (+) 0 [1..100000] -O2 (this is strictness analysis)

5000050000
 4,152 bytes copied during GC
 3,716 bytes maximum residency (1 sample(s))
 %GC time 2.3% (3.1% elapsed)

60Tuesday, 18 May 2010

 f = (“Report\n”++) . unlines . map show

61Tuesday, 18 May 2010

 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs

62Tuesday, 18 May 2010

 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs

 if not (null xs) then f (tail xs) else f xs

63Tuesday, 18 May 2010

 f = (“Report\n”++) . unlines . map show

 if length xs >= 0 then f (tail xs) else f xs

 if not (null xs) then f (tail xs) else f xs

 f (if not (null xs) then tail xs else xs)

64Tuesday, 18 May 2010

65Tuesday, 18 May 2010

A larger example of laziness

66Tuesday, 18 May 2010

Player 1 chooses a secret sequence of
4 tokens from a pool of 6 (no repeats).

Player 2 makes a guess.
Player 1 scores the guess indicating:

• How many are the correct token in the correct
position

• How many are the correct token in the wrong
position

Play continues until the secret is
guessed or player 2 gives up.

67Tuesday, 18 May 2010

68Tuesday, 18 May 2010

69Tuesday, 18 May 2010

70Tuesday, 18 May 2010

71Tuesday, 18 May 2010

72Tuesday, 18 May 2010

73Tuesday, 18 May 2010

74Tuesday, 18 May 2010

75Tuesday, 18 May 2010

76Tuesday, 18 May 2010

77Tuesday, 18 May 2010

78Tuesday, 18 May 2010

79Tuesday, 18 May 2010

80Tuesday, 18 May 2010

81Tuesday, 18 May 2010

...

82Tuesday, 18 May 2010

...

83Tuesday, 18 May 2010

...

2 1

84Tuesday, 18 May 2010

...

2 1
3 0
3 0
2 2
2 1
2 1
2 1
3 0
2 0
2 1
3 0
2 0
2 2

85Tuesday, 18 May 2010

...

2 1
3 0
3 0
2 2
2 1
2 1
2 1
3 0
2 0
2 1
3 0
2 0
2 2

86Tuesday, 18 May 2010

...

2 1

87Tuesday, 18 May 2010

...

2 1

1 2
3 0
2 1

2 0

88Tuesday, 18 May 2010

...

2 1

1 2
3 0
2 1

2 0

89Tuesday, 18 May 2010

90Tuesday, 18 May 2010

Lazy evaluation
 Infinite structures
Avoiding unnecessary work
Cyclic definitions
Memoization
Lazy IO
Circular programming

91Tuesday, 18 May 2010

