
The Power of Events 

Ashic Mahtab, SPA2014, Sunday 29th June, 2014 1:00pm to 7:00pm 

About Ashic 
Software builder – interested in distributed systems, solving problems, and data science. 
 
Fan of Haskell, Erlang, F#, but most clients prefer to pay him to write C#. 
 
Contact: ashic@heartysoft.com 

Agenda 
 A bit about DDD, CQRS and Event Sourcing 

 Beyond notifications – events in modelling 

 Events used for testing 

 Events used for storage (in place of key-value or SQL databases) 

 The Bigger Picture e.g. integration of bounded contexts, scalability etc. – there be dragons 

Domain Driven Design 
What it is, what it isn’t and when to apply it… 
 
There is no real definition of DDD. But there is an eponymous book. Ignore the first 11 chapters of 
the book. All these are concerned with one specific aspect of bounded concepts. Chapter 11 
onwards is still relevant. 
 
Ubiquitous Language – meant to be common to BAs, developers, architects, testers and users. 
 
DDD is a divide-and-conquer approach. The domain is decomposed into subdomains. Each one has 
its distinct problem-space. Some subdomains are called “generic” in that they can be used across 
multiple spaces (e.g. HR). Within this bounded context, everyone will have the same concepts, which 
are used to build the solution. 
 
Theoretically, each bounded context is contained within a specific domain, subdomain or generic 
subdomain. In practice, it’s more likely to extend across parts of several. 
 
Simple principle: a database serves only a single bounded context. Schemas etc. belong to the 
bounded context, and so does the universal language of that context. Other BCs can access it only 
through the externally exposed API. E.g. in insurance, you have claims, sales, actuarials… “Policy” 
means a different thing to Sales than it does to Claims. This is why it is futile to try to store policy 
entities in a single “central” policy table. The solution for Claims has to evolve in one direction that 
has implications for the database schema and might break the Sales solution. 
 
Events exported beyond a bounded context usually require a context-specific adapter to make them 
accessible to another bounded context. 
 

mailto:ashic@heartysoft.com


The book has advice about both implementation and strategic DDD. Alan Kay’s original object 
orientation model scaled up, essentially, but with stricter naming conventions. 
 
The book says that DDD is not the use of specific technologies. Even the book states that it is only 
appropriate to solve about 10% of problems. In most cases, the problem is not complex enough. Or 
perhaps the problem is non-core business – e.g. CRM, Payroll. Just buy the solution from a specialist 
supplier. Or perhaps you’ll learn more by creating a proof of concept prototype in a couple of days. 
 

CQRS 
Command-Query-Responsibility Separation 

Event Sourcing 
Both CQRS and Event Sourcing are notionally orthogonal to DDD. E.g. a commit-log can be an event 
source. 

A common problem 
Stereotypical architecture with layers: 

 UI 

 Controller 

 Service 

 Domain 

 Repository 

 Database 
The layers are typically bound together with Data Transfer Objects (DTOs). Ashic has seen up to 17 
layers of abstraction between database and UI! The top layer had 16 dependencies because the 
abstraction was visible all the way up the stack. 
 
The domain layer exists to maintain the integrity of the data by applying rules. In typical applications, 
research has shown that some 80% of transactions are read-only, so don’t really need the integrity 
constraints. Why not optimise by letting the UI access the database directly for reads? Or provide 
just a thin abstraction layer. 
 
Implementing separate paths for querying and updating is one form of CQRS. In many applications, 
this gives you all the optimisation you might need. 
 
A second aspect is reducing the content of each record to the essentials for each model – e.g. 
querying needs more fields than integrity assurance. Dedicated query models allow you to draw 
boundaries around them and limit the complexity. You can get advantages by separating the parts of 
the schema required to support each operation into different tables, even different databases. 
 
Another form of CQRS is to separate a domain from its data storage using a message queue. This is 
called FORM 2. Very dangerous: if the programmer makes an error allowing one database to diverge 
from another, e.g. sending some messages more than once or not at all, there is no “source of truth” 
from which to determine “what really happened”. Despite that it is actually the most common form 
implemented! 
 
Form 3: UI connects to Domain, Domain fires off events. The event store publishes the events to the 
interested parties. The event store becomes the single source of truth. 



Events in Modelling 
Tiny steps – in today’s exercise, just implement a tiny bounded context. 

Event storming 
Modelling a solution using verbs and nouns can lead to awkward and rigid class hierarchies, double- 
and even quadruple-dispatching. Systems become loaded with “valuable names” such as Person or 
Repository, which appear to have higher levels of abstraction than RavenDBRepository, for example 
– though actually they are the same, it’s just that the SQLServer implementation came first. 
 
Requirements from the business are always changing, which leads to friction. 
 
Event storming is an approach to resolve both problems. Get all stakeholders in a room with an 
“infinite” modelling space. For every use case, take a sticky note and place it on the wall. These are 
effectively our commands in CQRS. Things that happen in reaction to those incoming commands are 
events – more sticky notes (perhaps in a contrasting colour). Trace the flow of events as far as it goes 
through the system. 
 
Next step is to draw boundaries by examining the flows of information. 
 
Then the next step is to add payloads to the data flows. 
 
Then look at the commands and events within a given bounded context and identify the payload 
information shared across multiple commands – this becomes your aggregate boundary. We’ll talk 
about aggregates later. 

Modelling Exercise 
Commercial book lending library. It emerges that there are (at least) five domains: inventory, 
customer relations, store front, promotions, billing… 
 
Events generated in one can become commands to another domain. To forward these commands to 
the relevant domain(s), use either 

 Process manager 

 Routing slip 
 
BizTalk is actually very good – but the facility to execute arbitrary code from within a node is heavily 
abused and makes BizTalk solutions inflexible. Separate routing logic from everything else. 

Events in Testing 
Formulating a test case often involves specifying the preceding series of events (the “given”), a 
command or incoming event (the “when”) and a series of events raised (the “then”). 
 
(Andy Longshaw): Pre- and post-conditions are events, while the “when” is a command. 
 
This series of events and commands can be represented by pure data. They can be read in and run to 
execute the test – but they can also be rendered to form documentation. 
 
See example in https://gist.github.com/ashic/f622d06d5b1a0fd46e6a 
 
The events and commands are represented as objects in the test. So for example we have 
AccountOverdrawn. 

https://gist.github.com/ashic/f622d06d5b1a0fd46e6a


 
Note that it’s important not to pollute the Account object with events or the event handling with 
Account objects. The AccountHandler class decouples the two. 
 
It is vitally important that the public interface of the Account class cannot modify the state of the 
object. Instead, the state is updated in private UpdateFrom() methods. These are invoked by the 
aggregate itself raising events, e.g. Apply(). 
 
The other classes are immutable value objects that represent events and commands. 
 
Test frameworks / libraries used: 

 dokimi 
o Testing DSL 
o Code generator – creates SpecSuite and SpecSuiteExtractor 
o You write framework class (a test class) based on nUnitSpecificationTest 

 Infura 
o Conventions – e.g. UpdateFrom (reflection is cached for efficiency) 

 Res 
o A simple, efficient event store that can be run on "traditional" storage (for when it 

really must be sql...) 
 
You can override the Wireup section of each test spec in a subclass to run the same test case in a 
production environment, for example. The default uses an in-memory data store. 

Experiences with message-based testing 
Business people tend to come to an implementation level when discussing requirements – by 
abstracting away from databases, object models etc. it keeps the discussion at the right level of 
abstraction. 
 
You can describe scenarios without running them. The test specifications are rendered as a Word 
document. You need to invoke dokimi.exe --help to see the options. It’s in dokimi/debug/bin. 
 
What tends to get missed is entire use cases, not erroneous or missing steps in the process. 

Event Sourcing 

Aggregate 
In the model where a domain generates events to an event store, which then distributes them to 
various other domains, including a UI which can send commands back to the domain to update its 
state, the domain state is determined by the preceding sequence of events. 
 
In general, an “aggregate” is one in which certain internal objects must be transactionally consistent 
at all times. For example, an account object must always safeguard that the balance is non-negative: 
so just the ID and balance are part of the aggregate. For e-mail sending, you need first name, last 
name and address to be grouped with ID into an aggregate. An aggregate is always persisted as a 
single operation. 
 
When transferring money from one account to another, the two account balances need to be 
transactionally consistent – so create another TransferBalance aggregate. The penalty for using a 
simple transaction manager is that you then have to wrap every other access to the account object 



in a transaction as well. Also, the rollback needed if the composite transaction fails loses a lot of 
business context. 
 
The aggregate is responsible for safeguarding integrity within its boundary – ideally no external 
object should even know what is inside that boundary. 

Principle 
Events generated from an aggregate are the only things used to “hydrate” the aggregate on the next 
command. Public getters and setters are strongly discouraged. 
 
The AccountHandler receives a command such as DebitAccount. To determine whether sufficient 
funds are in the account, the account handler creates a new (uninitialized) Account object and plays 
into it the events previously generated from the original Account. E.g. if previously initialised with an 
initial balance of £300, followed by a debit of £100, a new debit of £250 would be rejected by the 
business rules in the public API of Account. 
 
To keep this efficient, the transaction history can be truncated by means of a snapshot. 
 
The balance could simply be stored in the database as was traditional. But again, we would have no 
single source of truth to determine what really happened. Also, we don’t need to create a database 
schema for each domain – the event schema is very generic. So we’re trading off flexibility for 
performance (potentially – there are caching tricks that get the performance up again). 
 
Design guideline: if you see an aggregate with an unbounded event stream, it usually indicates the 
need for decomposition to smaller aggregates. In the case of a bank account, this is a quarterly 
account, for example. Another example is an overarching concept that supports temporal queries 
encapsulating a pure CRUD object. 
 
Hydration of a domain object can be controlled by the object itself. 
 
Example: locking an account after three failed attempts to log in. What if someone decides to reduce 
the number to 2? The SQL database would need to have columns for number of attempts, current 
state (locked or not) etc. And some rows could end up in an “inconsistent” state – 2 failed attempts 
made and yet not locked. 
 
NB this only applies to aggregates! Ordinary CRUD data can be stored/retrieved as normal. 
 
Comment: Cassandra is becoming very popular because it can be very efficient at storing both 
relational and non-relational data. 

Exercise 
Event-processing that stores something in SQLServer. 
 

1. Clone from http://github.com/heartysoft/res (you can use “cinst git” to install git in 
Windows) 

2. Open the solution res.SqlStorage 
3. Right-click the project res.SqlStorage and choose “publish” 
4. Click “Edit” 
5. Enter the database name, e.g. “.\sqlexpress” if you have installed SQL Server Express with 

default options 
6. Change database name to “Res” 

http://github.com/heartysoft/res


7. Press OK and then Publish 
 
Create a new solution as a Console Application. This will use the database created before. 
The code for the example is largely copied from the earlier exercise project. 
 
Ashic promised a fully elaborated demo on github soon. 

Other Frameworks 
You can just write hydration and dehydration yourself. Resonant is a good event store – but if you 
have to use SQL Server then Res is very good. Gregstore (sp?) 


