Writing a Domain-Specific Language in Java

Mike Hill, Robert Chatley

What’s the Problem?

Large projects get very tangled and intentions of the code become unclear.

Good programmers are language designers too – not usually from scratch, but building on the basis of an existing language (see Guy Steele Jr.). Today, that language is usually Java.

Different domains have their own domain-specific languages (“jargon”).

There are two types of DSL: internal (embedded) and external. In this session we are building an internal DSL on top of Java.

Techniques

Factories

Use factories to create instances instead of new. Static factory methods can be made much more descriptive:

drink = new coffee (true, true);

compare with

drink = Coffee.withMilkAndSugar();

Setter methods return an object

Return the receiver from what would have been a void method. Also, use “with” instead of “set” where it makes sense – avoids passing Boolean values, which are meaningless outside their context.

drink.withMilk().withSugars(2);

Builder pattern

Accumulate configuration options in a helper object (“order” for example) and finally construct the desired object or group of objects (drinks) in one go. Use a domain-relevant action word to indicate when the builder is being fired.

Order order = Order.forDrinks (Coffee.black(), Tea.withMilk(), ...).toTakeOut();

drinks = order.make();

Build or extract layers

The aim is to make the top layer read as naturally as possible.

Exercise

Auction: use the provided example code.

· Bidders have different strategies

· Refactor the bidders so that their strategies can be described as a DSL

· Get there by increments – don’t try to boil the ocean – start by removing duplication

· We have provided acceptance tests to keep you safe

Interim Conclusions

· Constructors are a problem. Simple Boolean parameters are one thing, where numbers and symbolic values have to be passed it’s more difficult.

· Strategy is clearly the most varying aspect of bidders, so factor this out to a separate class.

· Removing duplication gets you part of the way.

· Look at it from an aesthetic point of view – look at the top layer, which is what the consumer will see (i.e. acceptance test).

· It’s important to conserve constraints between configuration options when using generic initialisers – work with the Eclipse code completion feature! E.g. don’t offer “withInterval()” if that is not appropriate to the type of Strategy used as an argument to the factory method.

Next Phase of Exercise

Using the provided refactored example, start devising a DSL that is layered on top of the Bidder and BidStrategy classes, which will make the acceptance tests much more intuitive.

Conclusions

· Using Spring reflection is very clever but doesn’t make the code any more readable.

· Creating an extra class to represent the DSL layer works out less elegant from the user’s point of view than building the factory method into the class being manufactured:

Bidder bidder = Bidder.withName("fred").withStrategy(…)

compared with

Bidder bidder = Player.makeBidder("fred").withStrategy(…)

· Sometimes it makes perfect sense to have more than one argument to a function. For example, the above could lead to bidders being constructed without a strategy, which you would have to validate whenever the other methods of the class are invoked. Constructors have a lot going for them because they guarantee that every object is properly initialized.

Model Answers

This solution and the two earlier exercises can be downloaded from Mike’s web site: http://www.mandu.co.uk/spa2008/java-dsl/
Mike used the fact that every bidder has a name to write the “stop method” for the builder (“called()”). Using static imports (a Java 5 feature) the static methods of BidStrategyBuilder can be invoked without prefixing them with the classname. This makes the build method very readable:

from(5).inStepsOf(20).xyz...

Robert’s model answer uses the jMock2 double-brace notation (non-static initializer):

new Bidder() {{ called("fred"); when(startsTheBidding()).bids(10); }}

His solution ends up being quite rule-based. It is quite possible to compose any number of strategies and the first one matched fires.

Advantages

· Finished code reads similar to English – much easier to understand

Disadvantages

· Can be hard to debug

· Need to think about it carefully

· More work up front

Other languages (e.g. Smalltalk) are better at this than Java. But there are many situations in which you have no choice over the language.

